Skip Navigation
Skip Website Tools
​​

Laboratory of Virology

Skip Content Marketing
  • Share this:
  • submit to facebook
  • Tweet it
  • submit to reddit
  • submit to StumbleUpon
  • submit to Google +

Vincent J. Munster, Ph.D.

photo of Vincent Munster

Chief, Virus Ecology Unit, LV

Major Areas of Research

  • Natural reservoirs of emerging viruses and elucidation of the underlying biotic and abiotic drivers of zoonotic and cross-species transmission events
  • Evolutionary dynamics of emerging viruses in the context of virus-host ecology
  • Modeling zoonotic and cross-species transmission of emerging viruses and the efficacy of outbreak intervention strategies
 

Program Description

Emerging viral diseases are a major challenge to the safety of the world in the 21st century. The emergence of Ebola virus, avian influenza H5N1, Nipah and Hendra viruses, severe acute respiratory syndrome coronavirus (SARS-CoV) and, more recently, the novel Middle East respiratory syndrome (MERS) CoV, and avian influenza H7N9 has revealed the need for a more comprehensive understanding of the drivers of infectious disease outbreaks.

Birds, mammals, and arthropods are the principal source of most emerging viruses in the human population. Very little is known about the interaction of the viruses and their respective natural hosts and the changes in virus-host ecology resulting in cross-species transmission events, such as outbreaks in humans.

The main objectives of our research program aim to identify the underlying biotic or abiotic changes in virus-host ecology that allow these emerging viral pathogens to cross the species barrier. Recognizing both the strengths and weaknesses of a unilateral focus on field research on one hand and experimental research on the other, we set out to combine the best of both approaches in one research program, where we aim to identify drivers of cross-species transmission from data gathered in the field and model these drivers under experimental conditions in the lab.

To identify natural reservoirs of emerging viruses and to enhance our understanding of the underlying biotic and abiotic drivers of zoonotic and cross-species transmission events

The incorporation of host ecology in pathogen surveillance networks enables us to study the complex relationships between virus and host ecology. Currently, field study sites have been initiated in the Republic of the Congo, where we initiated long-term studies on the role of fruit bats in the ecology of Ebola virus. To monitor the seasonal, weekly, and daily migration patterns of natural reservoirs such as fruit bats, we will use satellite telemetry. Linking seasonal biological phenomena (appearance of fruit bats in the area, fruiting and flowering events of food sources, and dates of outbreaks) with virus prevalence data will likely result in the identification of driving biological forces behind temporal and spatial patterns of virus prevalence. Research in the Republic of the Congo is performed with our collaborators of the Wildlife Conservation Society and the Laboratoire National de Santé Publique in Brazzaville and focuses both on the public health and the conservation aspects of infectious diseases.

See the field study location in Google maps.
Visit the Wildlife Conservation Society.

Experimental modeling of zoonotic and cross-species transmission of emerging viruses and the efficacy of outbreak intervention strategies

For a wide variety of novel emerging infectious viruses (e.g., Nipah virus, Ebola virus, MERS-CoV), no prophylactic or therapeutic intervention measures are currently available to prevent or contain outbreak events. In addition, very limited information is available on the route of zoonotic and human-to-human transmission for most of these viruses. Currently, our best hope to prevent or intervene in future outbreaks of these viruses lies in the potential to efficiently block transmission and thereby spread of the outbreak. In order to efficiently establish prevention strategies, detailed knowledge on mechanisms of pathogenicity and transmission (contact transmission, fomite transmission, aerosol transmission, or foodborne or vertical transmission) in the context of abiotic (temperature, humidity, airflow) and biotic (routes of transmission, immune status, receptor distribution, amount of shed virus) factors is needed. The newly developed transmission models will be used to evaluate the efficacy of current outbreak intervention strategies, such as vaccination and antiviral therapies. A more comprehensive understanding of transmission events is likely to make an important contribution to the control of emerging zoonotic infections.

Training, capacity building, and knowledge transfer

The field program of the Virus Ecology Unit operates from the International Centers for Excellence in Research (ICER) at the Laboratoire National de Santé Publique, Brazzaville, Republic of the Congo. The goal of the ICER program in the Republic of the Congo is to facilitate the expansion of local research capacity by training young scientists and improving laboratory and clinical infrastructure. The Virus Ecology Unit has been actively involved in training local scientists in molecular diagnostics for a variety of diseases (e.g., Ebola virus, chikungunya virus, dengue virus, and yellow fever virus) and has developed collaborative research programs with local researchers.

Biography

Dr. Vincent Munster received his Ph.D. in virology from Erasmus University, Rotterdam, the Netherlands, in 2006. During his Ph.D. studies, Dr. Munster studied the ecology, evolution, and pathogenesis of avian influenza viruses. He continued his training at the Erasmus Medical Center from 2006 to 2009, where he worked within the Center for Research on Influenza Pathogenesis and Surveillance (CRIPS) focusing on pathogenicity and human-to-human transmission of influenza A viruses. Dr. Munster joined the Laboratory of Virology as a visiting fellow in 2009 to study the ecology of emerging viruses to include filoviruses and henipaviruses. In 2013, Dr. Munster established the Virus Ecology Unit as an independent tenure-track investigator. The mission of the Virus Ecology Unit is to elucidate the ecology of emerging viruses and drivers of zoonotic and cross-species transmission. The Virus Ecology Unit uses a combined field and experimental research approach and conducts research at the state-of-the-art high- and maximum-containment facilities of the Rocky Mountain Laboratories, as well as at field study sites in Africa (the Republic of the Congo, Mali, Liberia), the Caribbean (Trinidad and Tobago), and the Middle East (Jordan). Dr. Munster was awarded the European Scientific Working Group on Influenza (ESWI) Best Body of Work Award for Young Scientists in 2011 and the MERCK-IAAC young investigator award in 2014.

Research Group

photo of the Virus Ecology Unit members

Bob Fischer, Ph.D. (Contractor)
Neeltje van Doremalen, Ph.D. (Visiting Fellow)
Seth Judson, B.Sc. (Post-baccalaureate IRTA)
Trenton Bushmaker, B.Sc. (Biologist)
Joe Prescott, Ph.D. (Research Fellow)
Kerri Miazgowicz (Post-baccalaureate IRTA)
Vincent Munster, Ph.D. (Principal Investigator)
Former Lab Members

Shauna Milne-Price, B.A., currently assistant field director, Johns Hopkins University, Center for American Indian Health

Selected Publications

Prescott J, Bushmaker T, Fischer R, Miazgowicz K, Judson S, Munster VJ. Postmortem stability of ebola virus. Emerg Infect Dis. 2015 May;21(5):856-9.

Hoenen T, Safronetz D, Groseth A, Wollenberg KR, Koita OA, Diarra B, Fall IS, Haidara FC, Diallo F, Sanogo M, Sarro YS, Kone A, Togo AC, Traore A, Kodio M, Dosseh A, Rosenke K, de Wit E, Feldmann F, Ebihara H, Munster VJ, Zoon KC, Feldmann H, Sow S. Virology. Mutation rate and genotype variation of Ebola virus from Mali case sequences. Science. 2015 Apr 3;348(6230):117-9.

Adney DR, van Doremalen N, Brown VR, Bushmaker T, Scott D, de Wit E, Bowen RA, Munster VJ. Replication and shedding of MERS-CoV in upper respiratory tract of inoculated dromedary camels. Emerg Infect Dis. 2014 Dec;20(12):1999-2005.

van Doremalen N, Miazgowicz KL, Milne-Price S, Bushmaker T, Robertson S, Scott D, Kinne J, McLellan JS, Zhu J, Munster VJ. Host species restriction of Middle East respiratory syndrome coronavirus through its receptor, dipeptidyl peptidase 4. J Virol. 2014 Aug;88(16):9220-32.

de Wit E, Prescott J, Falzarano D, Bushmaker T, Scott D, Feldmann H, Munster VJ. Foodborne transmission of nipah virus in Syrian hamsters. PLoS Pathog. 2014 Mar 13;10(3):e1004001.

de Wit E, Rasmussen AL, Falzarano D, Bushmaker T, Feldmann F, Brining DL, Fischer ER, Martellaro C, Okumura A, Chang J, Scott D, Benecke AG, Katze MG, Feldmann H, Munster VJ. Middle East respiratory syndrome coronavirus (MERS-CoV) causes transient lower respiratory tract infection in rhesus macaques. Proc Natl Acad Sci U S A. 2013 Oct 8;110(41):16598-603.

Visit PubMed for a complete publications listing.

Video

Last Updated July 14, 2015