Skip Navigation
Leading research to understand, treat, and prevent infectious, immunologic, and allergic diseases
Skip Website Tools
​​​​​​​
Skip Content Marketing
  • Share this:
  • submit to facebook
  • Tweet it
  • submit to reddit
  • submit to StumbleUpon
  • submit to Google +

Mario Roederer, Ph.D.

Photo of Mario Roederer, Ph.D. 

Acting Director, Translational Research Program
Chief, ImmuoTechnology Section
Vaccine Research Center

Major Areas of Research

  • Characterization of antigen-specific lymphocyte function and differentiation in vivo, following vaccination or infection
  • Identification of protective SIV and HIV envelope antibody responses
  • Development of new single-cell measurement technologies
 

Program Description

The ImmunoTechnology Section (ITS) is dedicated to understanding the roles and interactions of the individual components of the mature central immune system, with a particular eye toward the changes occurring during acute or chronic antigenic challenge. In general, we are looking for immunological correlates of protection (for vaccines) and correlates of pathogenesis (in disease).

Using high-content, high-throughput single-cell technologies (flow cytometric and transcriptomic), we are defining the functional repertoire of antigen-specific T and B cells and how these differ across vaccine regimens and infections. Using the nonhuman primate model, we can interrogate these cells from different tissues throughout the body, studying homeostasis, differentiation, and homing in vivo. We promote selected assays for use in clinical studies, in search of new assays to define protective immune responses.

We are also actively involved in the development and advancement of single-cell technology: instrumentation, reagents, analysis, and assays. We carry out a wide range of collaborations to bring our unique and advanced technology to other laboratories at the Vaccine Research Center (VRC), NIH, and around the world. Recently, we achieved the ability to do 30-color flow cytometry and are working toward our goal of 40 colors by 2016. We have begun to integrate this technology with single-cell transcriptomics to provide an unprecedented view of transcriptional, post-transcriptional, and post-translational regulation at the single-cell level.

Our projects include defining functional profiles of T-cell differentiation states, measuring viral and lymphocyte dynamics in SIV-infected nonhuman primates, understanding the role of antigenic heterogeneity of clonal HIV envelopes in resistance to vaccines, isolating novel and potent monoclonal antibodies to SIV and HIV, characterizing lymphocyte dynamics in healthy nonhuman primates, developing aerosolized vaccines to protect against TB, and defining the genetic bases for homeostatic mechanisms in humans.

Biography

Dr. Roederer received his B.S. in chemistry in 1983 from Harvey Mudd College, Claremont, California, followed by his Ph.D. in biological sciences in 1988 from Carnegie Mellon, Pittsburgh, in the laboratory of Dr. Robert Murphy. He trained as a postdoctoral fellow and then as a research fellow at Stanford University from 1988 to 1999 in the laboratory of Dr. Leonard Herzenberg. Following this, he was adjunct associate professor, department of stomatology, University of California, San Francisco, until 2000, when he came to the VRC. He is a senior investigator and is chief of ITS, director of the Flow Cytometry Core, and director of the Nonhuman Primate Immunogenicity Core within the Laboratory of Immunology.

Selected Publications

Roederer, M., Quaye, L., Mangino, M., Beddall, M. H., Mahnke, Y., Chattopadhyay, P., Tosi, I., Napolitano, L., Terranova Barberio, M., Menni, C., Villanova, F., Di Meglio, P., Spector, T. D. and Nestle, F. O. (2015). The genetic architecture of the human immune system: a bioresource for autoimmunity and disease pathogenesis. Cell, 161, 387-403.

Roederer, M. (2015). Parsimonious Determination of the Optimal Infectious Dose of a Pathogen for Nonhuman Primate Models. PLoS Pathog, 11, e1005100.

Roederer, M., Keele, B. F., Schmidt, S. D., Mason, R. D., Welles, H. C., Fischer, W., Labranche, C., Foulds, K. E., Louder, M. K., Yang, Z. Y., Todd, J. P., Buzby, A. P., Mach, L. V., Shen, L., Seaton, K. E., Ward, B. M., Bailer, R. T., Gottardo, R., Gu, W., Ferrari, G., Alam, S. M., Denny, T. N., Montefiori, D. C., Tomaras, G. D., Korber, B. T., Nason, M. C., Seder, R. A., Koup, R. A., Letvin, N. L., Rao, S. S., Nabel, G. J. and Mascola, J. R. (2014). Immunological and virological mechanisms of vaccine-mediated protection against SIV and HIV. Nature, 505, 502-8.

Chattopadhyay, P. K., Gierahn, T. M., Roederer, M. and Love, J. C. (2014). Single-cell technologies for monitoring immune systems. Nat Immunol, 15, 128-35.

Dominguez, M. H., Chattopadhyay, P. K., Ma, S., Lamoreaux, L., McDavid, A., Finak, G., Gottardo, R., Koup, R. A. and Roederer, M. (2013). Highly multiplexed quantitation of gene expression on single cells. J Immunol Methods, 391, 133-45.

Lugli, E., Dominguez, M. H., Gattinoni, L., Chattopadhyay, P. K., Bolton, D. L., Song, K., Klatt, N. R., Brenchley, J. M., Vaccari, M., Gostick, E., Price, D. A., Waldmann, T. A., Restifo, N. P., Franchini, G. and Roederer, M. (2013). Superior T memory stem cell persistence supports long-lived T cell memory. J Clin Invest, 123, 594-9.

Visit PubMed for a complete publication listing.

 

For more information on research conducted by Dr. Roederer, visit the Flow Cytometry Core and Non-Human Primate Immunogenicity Core.

Last Updated March 14, 2016