Skip Navigation

NIAID Archive

Important note: Information on this page was accurate at the time of publication. This page is no longer being updated.
NIH HHS News Release Logo
National Institute of Allergy and
Infectious Diseases (NIAID)

Tuesday, Aug. 14, 2001

Media Contact:
Sam Perdue
(301) 402-1663

Skip Content Marketing
  • Share this:
  • submit to facebook
  • Tweet it
  • submit to reddit
  • submit to StumbleUpon
  • submit to Google +

NIAID Researchers Identify HIV-Induced Changes in B Cells

One of HIV's most insidious properties is its ability to influence virtually every part of the human immune system. Antibody-producing B cells, for example, begin to malfunction early after people become infected with HIV, for reasons that have been poorly understood. In a study released today, however, researchers identify specific alterations that occur in B cells when HIV levels are high -- changes that disappear when patients are treated with antiretroviral drugs. The study is the first to define a unique subset of B cells in people infected with HIV.

Anthony S. Fauci, M.D., director of the National Institute of Allergy and Infectious Diseases (NIAID) and a principal author of the paper, is all too familiar with HIV's effects on his patients' immune systems. "Their B cells produce excessive amounts of nonessential antibodies, fail to respond properly to normal physiologic signals, and are at increased risk of becoming cancerous," he explains. "Because their B cells do not work properly, people with HIV are left with fewer means to fight off the opportunistic infections that we see in full-blown AIDS."

B cells produce antibodies, proteins that specifically recognize and attach to foreign molecules, or antigens, such as those found on the surface of an invading virus or bacterium. Once they've hitched themselves to an antigen, antibodies either directly block the microbe from spreading or act as chemical beacons, signaling other immune system components to eliminate the captured organism.

To learn how HIV affects B cells, researchers from Dr. Fauci's laboratory studied the immune systems of people who were infected with the virus. Susan Moir, Ph.D., Angela Malaspina, Ph.D., and colleagues looked at B cells both before and after patients were treated with antiretroviral therapy. The researchers found consistent changes in B cells that occurred when HIV levels in the blood were high.

"At high virus levels, people had a large number of totally dysfunctional B cells," says Dr. Moir. "When we treated the patients to reduce their virus levels, the B cells reverted to their typical ways." When the researchers analyzed the B cells in detail, they found a specific change that might help explain the cells' loss of function: decreased amounts of a protein called CD21.

CD21 is a molecule on the surface of B cells that attaches to an immune system protein called complement. Dr. Moir and colleagues studied the cells with low amounts of CD21 and found these cells were unable to respond to many different B-cell stimuli in test tubes, yet spontaneously produced large quantities of irrelevant antibodies. Both of these properties are seen in the B cells of people with HIV. The researchers had previously shown HIV can hitch a ride on B cells by attaching to CD21, providing further support for the protein's possible role in HIV-induced B-cell malfunction (see news release).

"When we studied the cells further, they looked something like plasma cells that couldn't quite make up their minds," says Dr. Moir. Plasma cells are B cells that, upon recognizing an antigen, rapidly divide and pump out thousands of antibody molecules to attack a microbial invader. As B cells become plasma cells they change shape, lose their CD21 and stop responding to many B cell stimuli. "The B cells in patients with high virus levels look like plasma cells under the microscope, have very little CD21, and don't divide in response to chemical signals," Dr. Moir continues, "but in other respects they retain features of their parent B cells."

The researchers believe HIV causes changes to occur in B cells that either partially transition them to plasma cells or stimulate them to undergo changes along a completely different biochemical pathway. By identifying a specific change that links HIV levels with B-cell malfunction, Drs. Moir, Malaspina and colleagues have a key tool to further investigate how the virus is causing B cells to go awry.

"We know it happens, we know what drives it, and we know what the consequences are," says Dr. Moir. "This is the very first step in learning how we might be able to prevent it and improve the care of people infected with HIV."

The study was funded by NIAID and the National Cancer Institute (NCI). Researchers from NCI and the George Washington University also assisted in the study.



Moir S et al. HIV-1 induces phenotypic and functional perturbations of B cells in chronically infected individuals. Proceedings of the National Academy of Sciences 98:10362-7 (2001). Published online before print August 14, 2001. 10.1073/pnas181347898.

NIAID conducts and supports research—at NIH, throughout the United States, and worldwide—to study the causes of infectious and immune-mediated diseases, and to develop better means of preventing, diagnosing and treating these illnesses. News releases, fact sheets and other NIAID-related materials are available on the NIAID Web site at

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit

NIH...Turning Discovery Into Health ®

back to top


NIAID Archive

Important note: Information on this page was accurate at the time of publication. This page is no longer being updated.

Last Updated August 14, 2001