Skip Navigation
Archive

NIAID Archive

Important note: Information on this page was accurate at the time of publication. This page is no longer being updated.
​​
NIH HHS News Release Logo
National Institute of Allergy and
Infectious Diseases (NIAID)
http://www.niaid.nih.gov

FOR IMMEDIATE RELEASE
Monday, April 14, 2003
5:00 p.m. Eastern Time

Media Contact:
Laurie K. Doepel
(301) 402-1663
niaidnews@niaid.nih.gov
Skip Content Marketing
  • Share this:
  • submit to facebook
  • Tweet it
  • submit to reddit
  • submit to StumbleUpon
  • submit to Google +

Genetic Blueprint for Q Fever Bacterium Unveiled

The genetic blueprint of yet another important disease-causing microbe, the bacterium Coxiella burnetii, has been deciphered and analyzed. C. burnetii -- a highly infectious organism that sickened thousands of soldiers in Europe during World War II -- can cause a debilitating flu-like illness in humans called Q fever. Additionally, the microbe is a potential agent of bioterrorism. Although only severe cases of Q fever are fatal, C. burnetii is of concern as a potential bioterrorist threat because early diagnosis of the disease is difficult, and the microbe is a hardy organism that can be aerosolized.

A report describing the sequencing project will be published online this week in The Proceedings of the National Academy of Sciences and will appear in the journal's April 29th print edition.

The research project, led by John Heidelberg, Ph.D., and Rekha Seshadri, Ph.D., at The Institute of Genomic Research in Rockville, MD, was supported by the National Institute of Allergy and Infectious Diseases (NIAID) and the Defense Advanced Research Projects Agency (DARPA). Study collaborators included Robert A. Heinzen, Ph.D., of NIAID's Rocky Mountain Laboratories in Hamilton, MT; Herbert A. Thompson, Ph.D., of the Centers for Disease Control and Prevention in Atlanta; and James E. Samuel, Ph.D., of Texas A&M University System Health Science Center in College Station. Of historical note, the Nine Mile strain of Coxiella burnetii just sequenced was discovered and isolated by Herald Cox, Ph.D., and his colleague Gordon Davis, Ph.D., in the mid-1930s while working at Rocky Mountain Laboratories.

"The genomic revolution promises profound benefits to human health," says NIAID Director Anthony S. Fauci, M.D. "Together with researchers around the world, NIAID continues to make significant contributions to a true revolution in biomedical research: the use of microbial genomic information to illuminate disease pathogenesis and to find new targets for drugs, vaccines and diagnostics." In recent years, NIAID has supported the completed sequencing efforts for approximately 30 medically important microbes, many of which are causative agents of emerging infectious diseases or potential agents of bioterrorism.

"This genome sequence offers a treasure trove of information that will allow scientists to develop a much higher-resolution picture of Coxiella's biology and its ability to cause disease," notes Dr. Heidelberg, who supervised the latest project.

C. burnetii is difficult to manipulate genetically because it only replicates inside mammalian cells. It primarily resides in human immune cells called macrophages, known as indiscriminate microbe-eaters. C. burnetii is unusual because it has an uncanny ability to survive in the environment and resist being degraded by macrophages.

"The Coxiella genome sequence is a major advance," adds Dr. Heinzen. "Not only will it allow us to more easily study genes that may be involved in causing disease, it also should reveal targets for improved diagnostics and potential vaccine candidates." The analysis found many genes that appear to be involved in the microbe's virulence and interactions with its human or animal host. Although the organism does not cause obvious disease in most animals, infected livestock are the primary reservoir of the bacterium.

Dr. Heinzen, who has studied C. burnetii and related bacteria for about 20 years, helped the project leaders at TIGR interpret what the genome revealed about the biology of the organism. Among the team's findings, the Q fever microbe does not appear to be as dependent on its human or animal host as other intracellular pathogens that cause leprosy, typhus fever or chlamydial infection, for example, indicating that C. burnetii developed the intracellular adaptation more recently. The Q fever genome also appears to be less stable than the genomes of these pathogens.

NIAID recently published its roadmap for biodefense research priorities on category B and C pathogens, including C. burnetii (see Biodefense Strategic Plan). Currently, Dr. Heinzen notes, the number of researchers studying the Q fever agent is small. He thinks there will be a "renaissance" in C. burnetii research because of new interest in it as a select agent and because of the just reported genomic data and analysis, which makes the organism much more amenable to study. One research focus in his laboratory is how the microbe persists within the toxic environment of the macrophage. Already, James M. Musser, Ph.D., and Stephen Porcella, Ph.D., colleagues of Dr. Heinzen at NIAID's Rocky Mountain Laboratories, have added the Coxiella genome to a recently constructed multi-pathogen microarray gene chip they constructed. The chip will facilitate research on the Q fever bug.

###

References:

R Seshadri et al. Complete genome sequence of the Q fever pathogen, Coxiella burnetii. Proceedings of the National Academy of Sciences Online Early Edition the week of April 14, 2003. DOI 10.1073/pnas.0931379100.

News releases, fact sheets and other NIAID-related materials are available on the NIAID Web site at http://www.niaid.nih.gov


NIAID conducts and supports research—at NIH, throughout the United States, and worldwide—to study the causes of infectious and immune-mediated diseases, and to develop better means of preventing, diagnosing and treating these illnesses. News releases, fact sheets and other NIAID-related materials are available on the NIAID Web site at www.niaid.nih.gov.

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit www.nih.gov.

NIH...Turning Discovery Into Health ®

back to top


Archive

NIAID Archive

Important note: Information on this page was accurate at the time of publication. This page is no longer being updated.
​​​​

Last Updated April 14, 2003