Skip Navigation
NIH HHS News Release Logo
National Institute of Allergy and
Infectious Diseases (NIAID)
http://www.niaid.nih.gov

FOR IMMEDIATE RELEASE
Monday, Dec. 6, 2010

Skip Content Marketing
  • Share this:
  • submit to facebook
  • Tweet it
  • submit to reddit
  • submit to StumbleUpon
  • submit to Google +

NIAID MEDIA AVAILABILITY
NIH Scientists Identify Mechanism Responsible for Spreading Biofilm Infections
Finding Could Lead to Treatment to Prevent Infection Associated with Catheters and Medical Implants

WHAT:
Scientists from the National Institutes of Health have discovered how catheter-related bacterial infection develops and disseminates to become a potentially life-threatening condition. The study, which included research on Staphylococcus epidermidis in mice implanted with catheters, could have important implications for understanding many types of bacterial biofilm infections, including those caused by methicillin-resistant S. aureus (MRSA).

Biofilms are clusters of microbes that almost always are found with healthcare-associated infections (HAIs) involving medical devices such as catheters, pacemakers and prosthetics. Most often biofilms that develop on such devices consist of Staph bacteria. Because biofilms inherently resist antibiotics and immune defenses, treating patients with biofilm-associated infections can be difficult and expensive. An estimated two million HAIs, most of which are associated with biofilms, occur in the United States annually, accounting for about 100,000 deaths.

Although biofilm-related infections result in significant numbers of deaths, scientists still have a limited understanding of how biofilms develop at a molecular level. But now scientists from NIH’s National Institute of Allergy and Infectious Diseases (NIAID) have identified a specific S. epidermidis protein, called phenol-soluble modulin beta (PSM-beta), that biofilms use for multiple purposes: to grow, to detach from an implanted medical device, and to disseminate infection. Antibodies against PSM-beta slowed bacterial spread within the study mice, suggesting that interfering with biofilm development could provide a way to stop the spread of biofilm-associated infection.

Similar proteins also are found in S. aureus, and the research group now plans to study their role in biofilms of MRSA and other bacteria.

ARTICLE:
R Wang et al. Staphylococcus epidermidis surfactant peptides promote biofilm maturation and dissemination of biofilm-associated infection in mice. The Journal of Clinical Investigation 121(1): DOI: 10.1172/JCI42520 (2011).

WHO:
Michael Otto, Ph.D., senior investigator, Laboratory of Human Bacterial Pathogenesis, NIAID. Dr. Otto is an expert in biofilms and Staphylococcus bacteria.

CONTACT:
To schedule interviews, please contact Ken Pekoc, 301-402-1663, niaidnews@niaid.nih.gov.


NIAID conducts and supports research—at NIH, throughout the United States, and worldwide—to study the causes of infectious and immune-mediated diseases, and to develop better means of preventing, diagnosing and treating these illnesses. News releases, fact sheets and other NIAID-related materials are available on the NIAID Web site at www.niaid.nih.gov.

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit www.nih.gov.

NIH...Turning Discovery Into Health ®

back to top


Last Updated December 06, 2010

Last Reviewed December 06, 2010