
 

 
        

  
 

   
 

 
 
 
 

Chapter XIV: Countermeasures Development Based on the Concept of an 
Evolution of “Radiation Disease

The Evolution of “Radiation Diseases”

McBride, W.H., Schaue, D., Micewicz, E., Williams, J.P.
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Introduction 
Physics provides us with a relatively simple 
explanation for the powerful cytotoxic nature 
of ionizing radiation. Low LET radiations 
result in about 105 ionization events per cell 
per Gy, with 1% in the nucleus. This means 
that exposure to whole body doses of ionizing 
radiation of sufficient magnitude to cause 
clinical symptoms will have affected every cell 
in the body, and many will die. Such clarity is, 
however, not so evident in the biology of the 
radiation tissue injury that ensues, despite 
over 100 years of research. Complex 
processes drive the evolution of radiation 
diseases, starting seconds after exposure 
and in some cases lasting a lifetime. Any 
clinical symptoms that appear are just the tip 
of the iceberg of underlying molecular and 
cellular processes (Figure 1). Multiple events 
may be observed that depend on many 
variables, including dose, dose rate, quality of radiation, time, the extent of damage, 
genetics, the microbiome and numerous other confounders. This complex ever-
changing molecular and cellular landscape presents a huge challenge for the 
mechanistic interpretation of the action of radiation and, in particular, the development 
of countermeasures whose efficacy can only be properly evaluated using identical, well-
defined and validated biological endpoints. This chapter will examine the 
interdependence or independence of the classical mortality endpoints and associated 
intercurrent processes that shape the evolution of the multiple facets of radiation 
“diseases”. 
Preclinical studies of the classical radiation syndromes generally have lethality as their 
endpoint. This seeming simplicity belies an inherent complexity, which is why the term 
“syndrome”, i.e. a set of tissue-related symptoms, is used. This complexity can be 
minimized in part by studying mortality in model systems where a tight radiation dose-
time window can be identified, typically associated with tissue-specific symptoms. Acute 
radiation syndromes (ARS) have well-defined, discrete time-dose relationships for 
mortality and, as a result, ARS tend to be the target of most countermeasures 
development, although late lethality syndromes and potentially lethal or non-lethal 
manifestations of radiation damage are equally valid targets that loom large for ARS 
survivors. These later facets of radiation disease tend to present as chronic diseases 
and may appear to be more stochastic than deterministic in nature, which makes their 
quantitation even more difficult. One problem with their study is that, while the signs and 
symptoms for ARS are tangible and reproducible, this is not always the case for later 
facets of radiation diseases, which result from an organism having to integrate complex 
internal and external signals over an extended time period, hence the diverse and often 
obscure pathoetiologies. For example, the life-shortening effects of radiation exposure 
are well known but their causes are not. 

Figure 1: Radiation disease is just the tip 
of an iceberg 
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The classic ARS are dealt with in more detail elsewhere so, in this chapter, we will 
discuss only those features that constrain and distinguish them for the purposes of 
comparison with less classical diseases that can evolve and how these impact 
countermeasures development. It should be noted that our knowledge of radiation 
diseases comes largely from animal models. While the relevance of ARS models to the 
human condition is generally accepted, as is the consistency of their occurrence across 
species, less is known about chronic radiation diseases. 
Radiation Syndromes – are they linked? 
Radiation syndromes are classically defined as a set of symptoms that are associated 
with a potentially fatal failure of a specific tissue system within a characteristic dose-time 
framework. In animal models, the probability of single dose radiation lethality increases 
rapidly from 0% to 100% over a narrow dose range and can be modeled by a probit S-
shaped cumulative curve. Steep dose-survival curves are an attractive research tool as 
a small change in dose can translate into a large increase in survival, making 
biologically and statistically significant differences more achievable. From a purely 
scientific point of view the steepness of the curve gives some indication as to the 
homogeneity of the system. If a countermeasure were to change this steepness, it 
would indicate additional factors at play. Another way of looking at this is to say that if 
the control dose-survival curves are less than steep, heterogeneity is likely already 
present with the possibility of more than one endpoint. 
Distinct ARS have been recognized since the 1950s (1) and follow the general dose and 

Figure 2: a) Probit mortality plots for H-ARS with dose for 2 strains of mice after WBI. b) 
Mortality with time plotted by probit for LD70/30 doses in the same 2 strains. 

time framework that is shown for hematopoietic ARS (H-ARS) assessed by probit plots 
in Figure 2 for 2 mouse strains exposed to whole body irradiation (WBI). Classic 
radiobiological target cell theory considers the dose-response curve (Figure 2a) to result 
from the random nature of radiation cell kill and the probability of elimination of the last 
surviving clonogen required to maintain tissue function. In contrast, the median survival 
time (MST) is classically believed to reflect the turnover time of the tissue, which like the 
dose response, displays genetic variation (Figure 2b). The source of this genetic 
variation in radiation response is generally obscure, even though it has been recognized 
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since the days when Little first developed inbred strains at the Jackson Laboratories -
an institution founded for "research in cancer and the effects of radiation," and when 
Russell, who moved from the Jackson Labs, performed his “megamouse” radiation 
genetic experiments at Oakridge. Possible sources of variation include a propensity to 
undergo different forms of radiation cell death, or the size of the “target” cell pool, or 
differences in the type or strength of the inflammatory responses that are generated; in 
any event, such differences greatly impact the development of a countermeasure, which 
has to be inherently effective across many genetic backgrounds. 
Death is, of course, in and of itself a process, and ascribing it to a single cause is often 
as much a philosophical as scientific question. For instance, classic H-ARS is often 
labeled “bone marrow syndrome” since lethality has most often been ascribed to severe 
neutropenia and thrombocytopenia due to loss of hematopoietic progenitor cells, and, 
indeed, transplantation with myeloerythroid-restricted progenitor cells can protect WBI 
mice from H-ARS (2), which may provide enough time for surviving multipotent stem 
cells to repopulate the system. At the same time, other causes of death, such as 
infection as a result of immune suppression and/or gut barrier insufficiency, cannot be 
excluded as causes of H-ARS lethality. 
One way to minimize errors in interpretation of ARS data is to closely examine the 
relationship between single radiation dose exposures and median survival time (MST). 
Such an exercise is illustrated in cartoon form for H-ARS and for gastro-intestinal ARS 

Figure 3: Dose vs MST relationships for H-ARS and GI-ARS showing the dose-dependency 
of lethal syndromes with intervening dose independent steps. 

(GI-ARS) in Figure 3. It makes the point that the MST is independent of radiation dose 
except during the time when lethality is rapidly increasing, i.e. when dose and MST are 
inversely related (3, 4). The implication is that these lethal ARSs behave as discrete 
entities. Similar MST-dose relationships are generally found for all ARS, and across 
species (2). It is true for the earliest lethal radiation syndrome, which has been labeled 
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cerebrovascular (CVS)/central nervous system (CNS-ARS) and occurs within 1-2 days 
of very high WBI doses (2). It is also true for certain well-defined late syndromes, such 
as the lethality from radiation pneumonitis that occurs in C3H mice between 12 and 20 
weeks after single thoracic radiation (LTI) doses of 13-15 Gy (5). 
The reason for the shape of this curve is not clear, but the plateau phase can be 
equated to the turnover time of the involved tissue, while one hypothesis for the inverse 
relationship between MST and dose is a decrease in the number of ante-mortem 
divisions traversed by stem/progenitor cells with increasing dose, although there are 
other possible explanations, such as an “avalanche” effect due to recruitment of cells 
with damaged DNA into division leading to their demise (6) (see 3). The shift in MST 
with dose in the lethal ranges is not large, perhaps 1.5 days/Gy (3), but is conceptually 
important because a narrow dose-time window can be determined within which to 
expect specific symptomology, helping to define the endpoint. From a countermeasures 
perspective, defining a narrow MST-dose window makes it likely that the 
countermeasure is counteracting a specific system failure. On the other hand, a wide 
MST-dose window would suggest heterogeneous endpoints and, therefore, multiple 
targets. 
Time-Dose Lethalities Outside Classic Syndromes 

Unfortunately, the MST-dose paradigm described above rarely encompasses all the 
mortality data for a given model, especially in the lower dose range. Reality is more 
complex. Assessing the mortality (or other hazard) distribution over a dose spectrum 

Figure 4: Mortality with time after LD70/30 dose of WBI delivered to C3H mice. 

and throughout the complete lifespan of the animals requires a considerable amount of 
data and a long-term study that is rarely performed or achieved. It is clear, though, that 
once an animal passes the dose-time window for a given lethal syndrome, other 
potential hazards loom ahead. Figure 4 shows a cartoon representation of the incidence 
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of mortality in a large number of C3H mice given a LD70/30 radiation dose. Mortality 
increases rapidly after day 10, due to H-ARS, decreases to zero on day 30 to 70, only to 
increase again with 2 waves of non- hematopoietic mortality, peaking at 3 and 6 
months. Indeed, none of the 30% of mice that survived H-ARS lived a normal life span. 
The administration of bone marrow protects against H-ARS lethality but Peters and 
Travis et al. showed that Balb/c mice receiving LD50/30 WBI doses with bone marrow 
rescue still developed increased late mortalities similar to those in figure 2 (7) 
(http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/20/029/20029409.pdf?). 
Patients receiving high-intensity cancer treatments with hematopoietic cell 
transplantation also develop early potentially fatal radiation disease. Two year survivors 
were found to be 8.4 times more likely to be frail than their siblings and had a 
cumulative incidence of subsequent all-cause mortality of 39.3% at 10 years compared 
to 14.7% in those without frailty (8). Individuals receiving such treatments were found to 
have a high incidence of cardiovascular disease with co-morbidities and mortalities (9), 
similar to that seen in Japanese A-bomb (10, 11), and the mice shown in figure 2 
(McBride, unpublished). Peters and Travis et al. (7) also observed that late radiation 
mortality was more sensitive to low dose-rates (around 1-5 cGy/min) than H-ARS or GI-
ARS, with dose-rate mattering little for H-ARS, moderately for GI-ARS, and most for late 
effects, is important for individuals unfortunate enough to be exposed to low dose-rate 
radiations and for the design of experiments to test countermeasures. 
Waves in the hazard function for late mortalities after total thorax only irradiation (TLI) 
could also be extricated from data pooled from multiple experiments in C3H mice 
receiving various TLI doses (6). The first peak occurred after 13 and 15 Gy between 90-

Figure 5: Cartoon showing variation in 
hazard for mortality over time in C3H mice 
given LTI doses of 12.25-15 Gy with 
periodically occurring peaks every 33 days 
– reconstructed from (6). The total 
mortality was 45%. 

Figure 6: Percent mortality versus LTI dose 
after 150-200 days (solid, red line), 90-140 
days (large, black dash), and the combined 
data (small, blue dash) – reconstructed from 
(6). 

120 days, with a second peak around 140 days and additional peaks out to 200 days 
(Figure 5). These waves in the hazard function per day had a calculated average 
periodicity of 33 days (Figure 5; 6). The first two peaks were associated with 
pneumonitic pathology, but this was not true for most of the late mortalities (12), which 
occurred primarily at lower doses of 12-13 Gy and independent of the incidence of prior 
deaths (Figure 6). This heterogeneity in the thoracic radiation response is illustrated by 
the observations that the radioprotector, WR2721, differentially minimizes very late 
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effects (13), whereas T cell depletion decreases pneumonitis but not later effects (14). 
Down et al. (15) has suggested that late changes in lung function and associated 
lethality can result from pleural effusions, which may be consistent with cardiovascular 
disease, while others have considered fibrosis as the cause (8). Censoring data at <140 
days gives a steeper mortality curve (Figure 6) and focuses the endpoint on lung 
pneumonitis, which is an important consideration when designing mitigator experiments. 
In general, late complications tend to have a broad dose-MST response curve, which is 
consistent with fibrosis being a major component and the fact that it is possible to live 
with a considerable amount of organ fibrosis as long as sufficient functional tissue is left. 
This highlights the point that assessors of radiation countermeasures need to carefully 
consider lethality endpoints. The time-dose relationships can help in this regard, but 
they can be misleading and may be less useful for late effects such as fibrosis. 
Conclusions on MST-Dose Relationships 

In spite of their non-mechanistic nature, well-considered MST-dose relationships have 
proven convenient when identifying lethal radiation syndromes for both medical and 
research purposes. A critic might say that they merely provide a conceptual framework 
to indicate the organ system that might be failing, and that the use of syndromic “labels” 
may well have delayed the development of appropriate radiation countermeasures by 
failing to identify other targets. This is a fair comment. For example, it should be self-
evident that death within 3-10 days of WBI is not necessarily due to GI insufficiency and 
it would be wrong to assume so simply on the basis of an observed MST. Mortality is a 
limited endpoint that cannot automatically be ascribed to a specific cause. Another 
major limitation is that clinical data on radiation lethality are not readily available, and 
therefore preclinical findings cannot easily be extrapolated to the human condition. This 
was why the FDA established the Animal Rule 
(http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ 
default.htm) that requires testing in more than one species and some indication as to 
mechanism of action for drugs that cannot be tested in humans, as is the case for 
radiation mitigators. Having said that, consideration of dose-time relationships and 
associated endpoints is important and failure to take them into consideration may be 
one reason why countermeasure findings are difficult to reproduce between laboratories 
and to reproduce in different genetic models (16). 
The bottom line is that the development of radiation countermeasures requires clear 
endpoint definition; well-defined MST relationships for mortality help in this regard, but 
all radiation exposures cause multiple effects with an inherent degree of randomness. 
Complications arise 1) from the waves of lethalities that occur over time, and 2) from the 
impact of systemic factors on local tissue radiation responses; the latter affects the 
choice of the radiation model (WBI or partial body) for countermeasure development. 
Some of these issues will be discussed after consideration of intercurrent molecular and 
cellular processes and the possible influences of systemic factors that – in their entirety 
– form the bulk of the iceberg underlying the observed radiation syndromes. 
Intercurrent Radiation Diseases 
The concept that radiation generates intercurrent events, that influence processes 
within a tissue and at a distance, is not new. When Mole in 1953 used the term 
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“abscopal” to describe events “at a distance from the irradiated volume but within the 
same organism,” he was in fact considering how the effect of WBI on one normal tissue 
influences the response of another and may cause symptoms “by interfering with 
…cellular interdependence, with organization” in tissues (17). He noted that, earlier, Lea 
had proposed the reverse i.e. that a normal environment might affect the behavior of 
irradiated cells (18). 
Here, we are discussing intercurrent pathological processes that are generated in 
irradiated tissues and that act both locally and/or systemically on other irradiated or non-
exposed tissues. Responses can be rapidly initiated soon after radiation exposure that 
trigger cascadic processes that evolve progressively over time, and often appear to be 
associated with more readily identified clinical symptoms in dose and time. 
Radiation-induced Molecular Signals 

Ionizing radiation generates DNA damage and oxidative stress in cells, which rapidly 
activates molecular signaling pathways in response, subsequently receiving further 
input from sensors of cell damage and death. Canonical pathophysiological cascades 
are set in motion that, initially, are pro-inflammatory in nature. Their immediate role is to 
harness the immune defenses. Later, feedback control circuits are triggered to control 
the resulting inflammation and to correct the associated pathology with the aim of 
restoring homeostasis. Multiple cell systems are affected, both within and outside the 
irradiated field. Both WBI and local irradiation send signals that mobilize and activate 
bone marrow cells that enter irradiated and non-irradiated sites by interacting with a 
systemically activated vasculature. In addition, organ systems are thrown into disarray 
as a result of the loss of radiosensitive subpopulations of cells, for which they attempt to 
compensate to maintain tissue functionality. Depending on dose and volume and site of 
exposure, some physiological systems may be permanently lost. These “forever dead” 
systems are not necessarily critical with respect to short- or even long-term function 
after irradiation, but can have indirect effects on systems trying to regain homeostasis 
and maintain the imbalance and the progression of late clinically important outcomes. 
Tissues that have a small number of functional subunits or tissue rescuing units (19) will 
tend to be more radiosensitive. For example, at the lower end of the dose range, 
complete hair loss due to follicular damage, skin pallor and hair greying due to loss of 
melanocytes, or sterility due to loss of germ cells is likely. Even if such losses do not 
affect overall survival, they may have a significant effect on quality of life, for example, 
by creating hormonal or endocrine imbalances. Certainly, these effects strongly echo 
Mole’s thoughts mentioned earlier on how WBI might interfere with cellular 
interdependence and organization (17). 
The downstream radiation response period involves multiple molecular and cellular 
effector mechanisms. Pro-inflammatory cytokine cascades are rapidly activated after 
radiation exposure, as are cascades of inflammation-related plasma proteins belonging 
to the complement, kinin, coagulation, and fibrinolysis systems, many of which are 
acute phase protein reactants (20). The major cytokines expressed include tumor 
necrosis factor-alpha (TNF-α), interleukin 1beta (IL-1b), basic fibroblast growth factor 
(bFGF), interferon (IFN), and vascular endothelial growth factor (VEGF, otherwise 
known as vascular permeability factor) (20). Another element in this coordinated 
response is the upregulation of cell adhesion molecules that are critical for extrvasation 
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of immune cells and damage recognition. Damage-associated molecular pattern 
molecules (DAMPs) that are released by damaged and dying cells signal 
through pattern recognition receptors (PRRs), such as the transmembrane Toll-like 
(TLR) or cytosolic nucleotide binding (NOD) receptor family members, to initiate 
further cytokine cascades and other inflammation-related products (21-23). 
However, many DAMPS, such as the prototypical DAMP, high-mobility group box 
1 protein (HMGB1), are biologically active and, following irradiation, can maintain and 
amplify inflammation (21), ironically leading to further tissue injury. 
Intrinsic attempts to control inflammation-associated damage come in the form of anti-
oxidant and anti-inflammatory innate immune cells and molecules. These include T cell 
and macrophage subsets, such as Tregs, myeloid-derived suppressor cells, M2 
macrophages and cytokines, like IL-10 and TGF-β. One result of immune cell infiltration, 
is a change in the profile of the cytokines that are produced changes over time. Another 
time-related mechanism seen following irradiation is stress-induced premature 
senescence (SIPS), with the emergence of a “senescence-associated secretory 
phenotype” (SASP) with characteristically high levels of IL-6, C-reactive protein, etc. 
The SASP will influence both the local microenvironment through bystander action and 
also events at distant sites (24-26). How these potential mechanisms interdigitate to 
result in what looks like waves in lesion evolution is unclear, but alternating cycles of 
immune activation and suppression seem a likely component. 

Figure 7: Fluctuation of TNF-α mRNA levels (green, dashed) days, weeks, and months after
25 Gy whole brain irradiation in C3H mice and their correlation with oligodendrocyte levels 
after 20 (black), 30 (red), and 45 Gy(blue) measured by CNPase expression. 

It is easy to assume that radiation responses evolve progressively with time when, in 
fact, they appear as waves, with repeating cycles of inflammation, bouts of oxidative 
stress, further cell loss and/or cell proliferation, and associated alterations in tissue 
functionality that may or may not be lethal. The oscillations can be ascribed to feedback 
mechanisms that are induced to control the damage process, although they themselves 
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may have been damaged by radiation. Clinical symptoms, morbidity, and even mortality 
is not seen until the extent of tissue damage and the loss of function become too great. 
A brief snapshot of a body of work on how these processes can evolve (27-30) is shown 
in Figure 7. It illustrates the periodicity of events in the evolution of radiation-induced 
brain demyelination in mice using a single classic pro-inflammatory cytokine (TNF-
α) and one cell type (oligodendrocytes) for simplicity to demonstrate this balletic 
evolution of response, although many other cytokines and cell populations are involved 
and could be used. TNF-α is seen to be induced in the brain within minutes of radiation 
exposure, but then fluctuates wildly over subsequent months. Oligodendrocyte levels 
also fluctuate, but result in dose-related demyelination only at >3 months. It is important 
to note that oligodendrocyte dose-responsiveness is seen only from one month 
onwards. The dose-responsiveness of these changes over time raise serious questions 
as to whether early radiation-induced changes can predict late outcomes. It also 
highlights the point that, in all radiation effects that are associated with cell depletion, 
the margin between life and death, or symptoms and no symptoms, is likely due to a 
small number of surviving cells that make recovery possible despite extensive cell loss. 
A critical question that should be raised is the relationship among these processes, one 
to the other. For instance, is TNF-α and other molecular components of the cascade 
causing damage or are they just a surrogate biomarker of radiation damage? Are the 
“waves” necessarily related to one another or could they be generated independently? 
Since TNFR2 knock out mice develop radiation-induced brain damage earlier and after 
lower radiation doses, one suspects a direct involvement (31). The TNFR2 receptor is 
known in many situations to counter the effects of the pro-inflammatory TNFR1 death 
receptor, arguing that these processes are intrinsic to the manifestation of radiation 
damage. However, it should be noted that similar neurological symptoms can be 
associated with diverse pathologies. Indeed, TNF-α is highly pleiotropic, having major 
vascular effects, including increasing vascular permeability. It also can be directly 
cytotoxic to oligodendrocytes and contributes to astrogliosis. Furthermore, TNFR2 
knock out mice develop seizures relatively early after brain irradiation (around 3-4 
months), whereas the most extreme forms of demyelination are seen at 6 months. The 
radiation-induced seizures are in keeping with findings in other (non-radiation) seizure 
models, where TNFR1 signaling appears to contribute to neuropathology while TNFR2 
suppresses this pathway and is neuroprotective (32, 33). In fact, the radiation-induced 
seizures in TNFR2 knockout animals seem subtly different from the radiation endpoints 
generally seen in wild type mice, which is reflected in their different time-dose 
relationship. This highlights the point that, if any genetic model is used to explore the 
mechanism of action of mitigators, care is needed in data interpretation as the 
mechanistic endpoint may have altered. 
Similar intercurrent pathological processes seem to follow radiation exposures in all 
other tissues, which leads to the question as to how much they contribute to the many 
radiation disease states. At this point, many questions remain as to how these waves of 
responses evolve with time, how they relate to outcome, and how they can be 
influenced by mitigators. It seems though that, through these avenues, the body 
struggles to control pathological responses. In an evolutionary sense, these avenues 
exist to initiate healing of damaged tissues, such as following pathogen invasion or 
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physical insult, with the ultimate aim being homeostasis restoration. Where radiation 
may differ from other challenges is by causing DNA damage that can remain latent in 
some cell types, but may eventually be expressed when the cells proliferate, either as 
part of normal tissue turnover or as a natural response to tissue damage. Under such 
circumstances, cells with latent DNA damage may complete one or a few divisions 
before dying a mitotic death. Given the role of the innate immune system in these 
responses, as well as in the maintenance of homeostasis, it is relevant to look at the 
role of bone marrow-derived myeloid cells in the evolution of radiation disease. 
The Bone Marrow Axis and Systemic Factors in Radiation Diseases 
The natural involvement of the immune system in tissue damage responses 
complicates any mechanistic interpretation that is based solely on elimination of critical 
target cells. A few examples will illustrate this point: 
GI-ARS is often reported as occurring over a wide range of radiation doses, but broad 
dose ranges do not jibe well with MST-dose relationships for ARS, suggesting 
underlying complexity or heterogeneity in the data sets. At least some of this 
heterogeneity can be explained by the finding that lethality occurring in C3H mice before 
10 days after WBI doses of 12 to 17 Gy can be mitigated through transplantation of 
bone marrow cells (10, 11), whereas this approach is ineffective after higher WBI doses 
(of up to 22.5 Gy). When delivered to the abdomen alone, doses of 12-17 Gy cause no 
lethality, yet higher doses still do. In microcolony assays, epithelial crypt stem/progenitor 
cells show the same dose response, irrespective of whether WBI or abdominal 
irradiation is given and whether or not bone marrow was injected. Our interpretation of 
these data is that “GI-ARS” (defined by time to death) in the high dose range is due to 
failure of epithelial stem/progenitor cells, while this is not true at lower doses, where the 
term “GI-ARS” has been used, but the cause of death is in fact obscure. We appreciate 
that others have interpreted the above findings to indicate a contributory role for 
marrow-derived cells in preventing “gut death” in the lower dose range, but this does not 
solve the heterogeneity issue. The recent observation that CD11b+ myeloid cells in the 
intestinal stem cell niches can operate through the WNT pathway to mitigate the 
radiation-induced loss of crypt progenitors and stromal cells after 18 Gy abdominal 
irradiation (34), goes some way to tease out the mechanisms, but questions remain as 
to the cause of death in the lower dose range. 
Bone marrow-derived cells may, of course, play a different role if lethality is due to 
sepsis. Radiation-associated sepsis can be caused by bacterial translocation across a 
damaged mucosal epithelial layer, perhaps acting in combination with radiation-induced 
immune suppression (35). The role of microbes, especially after WBI, is an old story, 
but it still needs to be carefully evaluated in each model to avoid introducing confusion. 
The fact that radiation alters the composition of the microbiome (36, 37) and creates a 
microenvironment that favors opportunistic pathogens (38) may be important for both 
ARS and late effects. In this regard, studies showing that barrier protection, in 
conjunction with appropriate medical regimens, shifts the effective dose ranges of both 
H-ARS and GI-ARS may eventually reveal the endpoints that should be assessed in the 
development of certain countermeasures (39). For example, intestinal endothelial cell 
apoptosis has been postulated as a cause of GI-ARS (40), especially in the low WBI 
dose range. Additional factors, such as villus shortening, with subsequent difficulties in 
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absorption and peristalsis leading to diarrhea, may also contribute to lethality, although 
in our opinion these are poor endpoints due to their lack of specificity: mitigating 
diarrhea should not be a primary aim of countermeasure development. 
The evidence for involvement of myeloid cells in the low dose range of “GI-ARS” is 
strong since, as suggested earlier, attribution of “GI-ARS” may have confused 
countermeasure development; GI-specific injury in the high dose range, as measured 
by crypt damage, is more convincing with respect to mechanism. It is also likely present 
in CNS-ARS lethal syndrome after WBI, which is generally associated with clear 
evidence of rapid vessel and capillary damage in association with neutrophil infiltrates 
(1). This syndrome is considered by many to be consequent to vascular leakage and 
edema with increased intracranial pressure rather than direct brain tissue injury (hence 
CNS-ARS). However, if whole brain irradiation is delivered, as opposed to whole body, 
significantly larger doses are needed for lethality, so it is likely that the etiology of the 
disease is altered, even if the time frame and symptoms are similar. Bone marrow-
derived cells have also been implicated in the healing of localized radiation damage in 
skin, lung, and kidney. For example, sub-lethal WBI doses are sufficient to cause a 
deficit in murine skin wound healing that can only be attained with substantially higher 
doses of local irradiation, in the order of 13 Gy or more (41). Another case in point is 
radiation lung disease, which is clearly associated with infiltration of bone marrow-
derived cells (42-44). The composition of this infiltrate varies over time, is dependent on 
the endpoint (whether pneumonitis and/or fibrosis, etc), and at least in murine models, 
is generally tailored to the intrinsically variable cytokine environments characteristic of 
different strains (42-44). In addition, T lymphocytes seem critical for radiation 
pneumonitis, but are not involved in late mortality (14, 45). 
The reality is that diverse systemic elements are likely involved in all radiation 
pathologies. Bone marrow-derived cells are just one contributor to the complex 
evolution of radiation disease. The question that arises is the extent to which they 
mitigate or exacerbate the outcome in the absence of other interventions, and whether 
or not they contain useful countermeasure targets. Such would be the case where 
systemic inflammation is clearly part of the disease and multiple organs show 
pathology, as in very late effects with lung fibrosis or cardiovascular or kidney disease. 
On the other hand, where tissues fail apparently due to the loss of a critical population 
of target cells (parenchyma) within a tight dose-time window, the role of bone marrow-
derived cells is less clear. In either case, unless care is taken, mitigators may be merely 
addressing the symptoms rather than the problem (46). 
Inflammation in Radiation Diseases 
One could argue that “inflammation” is a rather poor word to describe the immensely 
complex processes triggered by a wide range of potential pathological challenges, 
including radiation. “Inflammation” is not one process, but is multifaceted. Classically, 
the difference between acute and chronic inflammation is the lymphocyte involvement in 
the latter, but this simple distinction is totally inadequate to describe the many 
inflammatory conditions that can be found. This subject has been reviewed (20), and 
will not be covered in detail here, but it is worth making a few points. 
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Ultimately, “inflammation” can only be defined properly by its individual cells and 
products. For example, interleukin-6 (IL-6) is frequently described as pro-inflammatory 
or as an acute phase protein. However, IL-6 at pathological levels enhances TGF-β 
production and late fibrosis, i.e. it can drive an archetypical anti-inflammatory response 
(47). This illustrates the importance of understanding that the immune system is a 
balance of opposing forces that can be present at the same time, even if one 
predominates in a disease situation and that the role of an individual cytokine can vary 
depending on the circumstances. Also, baseline conditions can vary depending on the 
genetics and the environment and may determine outcome. For example, C3H mice 
that succumb to pneumonitis following thoracic irradiation have failed to switch off the 
TNF-related response, unlike C57BL/6 mice that go on to develop fibrosis (43). As with 
the data in figure 7, early radiation responses in these two mouse strains often show 
little significant difference, but, over time, the pro- versus anti-inflammatory responses 
can differentially predominate, leading to alternative outcomes. 
One important aspect of inflammation that is not often taken into account in radiation 
disease are the thrombo-inflammatory cascades, and we will consider these before 
discussing dysregulated, chronic inflammatory states and their contribution to late 
radiation damage. 
Thrombo-Inflammatory Events and Vascular Damage in Radiation Diseases 

Thrombo-inflammatory events are tightly linked to vasculature damage and may act as 
a nidus for subsequent progressive post-radiation manifestations (48, 49). A drastic and 
somewhat paradoxical example of the power of this thrombo-inflammatory axis is that, 
for decades, radiation was used in the clinic as a hemostatic tool against cancer-related 
bleeding (50). The association between vascular radiation injury and inflammation was 
described more than a century ago by the pioneers of radiation research, including the 
Curies and Becquerel (51, 52). Thereafter, there were many contentious discussions as 
to whether normal tissue damage was vascular or parenchymal in nature. Under any 
circumstances, vascular damage is an inevitable and integral part of any tissue 
response to radiation that can take many and varied forms and at varying times after 
exposure. It is a rarely considered target for countermeasure development, but, at the 
very least, its participation in acute and chronic inflammation confounds the 
interpretation of radiation effects. 
Understanding vascular damage is complicated by the fact that the endothelial vessel 
lining exhibits significant phenotypic heterogeneity, not only across different tissues and 
organs, but also between different segments of vascular loops within the same organ, 
and even between neighboring endothelial cells of the same organ and blood vessel 
type (53). The associated supportive structures, such as the smooth muscle cells, 
basement membranes and matrix, also vary extensively and will influence the 
magnitude and type of the vascular response, which may be why the venous 
microvasculature expresses radiation damage more readily than arterioles. It follows 
that radiation responses are highly context dependent. Vascular responses can be 
initiated by only a few gray (Gy) and may have minimal effect on tissue function (54), 
while microvascular failure at high doses is generally considered the cause of CNS-ARS 
lethality. In addition to dose, the volume irradiated will be important. For example, after 
WBI, the systemic, cumulative impact of vascular damage will be considerably more 
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clinically relevant than after partial body irradiation. The impact on tissue function will 
also vary with tissue, time, and many other factors and will involve multiple components 
of the thrombo-inflammatory cascade. Nonetheless, it is clear that the vasculature has 
to be considered as a major force in the evolution of radiation diseases and a vital target 
for countermeasure development. 
The acute microvascular cascade evolves over minutes to days after irradiation, 
reflecting the classic events that occur during acute inflammation (55). For convenience, 
a summary of acute and late vasculature-related events is presented in Table 1 (not all 
of which will be discussed here). Within a day of radiation exposure, endothelial cells 
may be lost through apoptosis caused by direct radiation damage or mediated by 
members of the TNFR family of death receptors (56). As has been mentioned, some 
investigators consider GI-ARS to be a direct consequence of endothelial cell apoptosis 
involving the sphingomyelin pathway (57), although this has been strongly disputed. 
What is not disputed is the fact that moderate radiation doses inflame the 
microvasculature, activating endothelial cells to express pro-inflammatory cytokines 
and/or receptors and cascades involving plasma proteins and cell adhesion molecules, 
such as selectins and ICAM-1 (58-61). These events proceed in distinct localized 
patterns in the vasculature of the irradiated tissue (62). Activated endothelial cells tether 
neutrophils and other myeloid cells, which, in turn bind activated platelets (63) that 
produce a burst of radical oxygen species (ROS). Myeloid pro-inflammatory cytokines, 
in a positive forward loop associated with increased oxidative stress, generate further 
inflammation, amplifying the response. This oxidative burst by myeloid cells also may be 
required for the transmigration process across the endothelium, which itself can lead to 
damage influencing other vascular functions after irradiation, including in the kidney 
(64). Indeed, the many mitigators that have demonstrated anti-oxidant properties may 
function by inhibiting this oxidative burst and abrogating its downstream consequences 
(65). The short-term functional effects of radiation on the vessels are vasodilation, 
increased blood flow to the site, increased vascular permeability and migration of 
inflammatory cells into the tissue parenchyma, along with plasma exudation (66, 67). 
One consequence of the radiation-induced activation of death receptor pathways and 
thrombo-inflammation is loss of microvascularity. This can be assessed histologically by 
measuring the mean vascular density in irradiated and non-irradiated tissue; for 
example, after staining using anti-CD31 antibodies. CT imaging can be used (68). 
Furthermore, vessels may collapse or develop thickened basal membranes. Since the 
initial vascular damage is localized, over time, they also may establish an inflammatory 
non-resolving nidus within a tissue that may serve as a focus for lesion progression. 
Such a nidus may lead to the localized expression of late damage that is frequently 
seen in irradiated tissues and explain the random nature of disease expression between 
tissues and individuals. 

ACUTE EVENTS 

• Endothelial cell apoptosis through radiation or Fas death receptor-induced 
pathways 
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• Plasma cascade complement, kinin, coagulation, fibrinolysis systems engaged 

• Pro-inflammatory cytokine production, such as TNF-α, IL-1, IL-6, VEGF, bFGF, 
and DAMPS, such as HMGB1. 

• Endothelial cell hypertrophy and spreading 

• Increased cell adhesion molecule expression such as selectins, ICAM-1 

• Vascular contraction and dilation of arterioles leading to increased blood flow and 
redness 

• Neutrophil margination, rolling and adhesion to activated endothelium 

• Platelet adhesion 

• Migration of neutrophils, monocytes, and lymphocytes, normally in that order, into 
extracellular spaces 

• Increased vascular capillary permeability 

• Plasma exudation, edema 

• ROS production 

• Collateral damage to parenchymal cells 

• Activation of blood extrinsic coagulant and pro-thrombotic systems 

• Clotting, vascular stasis, hypoxia, ischemia 

• Vascular pruning, failure of neo-angiogenesis, possible switch to vasculogenesis 

LATE EVENTS 

Chronic inflammation 

Mononuclear cell infiltrates with prominent mixed lymphocytes 

Growth arrest, senescence, and production of senescent-associated secretory 
phenotype (SASP) by fibroblasts and smooth muscle cells 

Chronic cytokine production, such as IL-6, IL-8, TGF-β, and ROS production 

Vascular rupture, capillary dilatation 

Thickening of vascular walls 

Decrease in vasculature, hypoxia, ischemia 

Telangiectasia, thrombosis, stenosis, fibrosis, necrosis 

Table 1: Acute and late events in inflammation 
In addition to the consequences of direct cell loss, radiation blocks the angiogenesis 
which normally would be initiated to restore normal blood flow and hemostasis. This 
complex process involves migration, proliferation, sprouting, and differentiation of 
endothelial cells interacting with the subendothelial space lining the vessel lumen or the 
vascular adventitia (69) and it is not clear which step is most sensitive to the prior 
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radiation injury. Compensatory vasculogenesis is a possible alternative tissue survival 
pathway to angiogenesis that most likely involves infiltration of bone marrow-derived 
endothelial progenitor or stem cells, although this also may be compromised following 
WBI (versus local irradiation). However, vasculogenesis tends to be a less effective 
tissue support system and may not be able to replace larger volumes of lost 
microvasculature (70). One measure of this defect is seen in the tumor bed effect that 
slows the growth of tumors in pre-irradiated normal tissues (71). In any event, vascular 
loss is a common result of radiation damage (68, 72) that may precipitate a hypoxic and 
ischemic microenvironment and progress into late damage expression, such as fibrosis 
and necrosis (Table 1), and generate a M2 suppressive macrophage lineage (42, 73). 
Ironically, hypoxia increases reactive oxygen species (ROS) levels by the electron 
transport chain and changes the metabolic status of the tissue through HIF-1 
expression towards glycolysis and Nrf2 antioxidant products (e.g. NADPH and 
glutathione) (73). This metabolic adaptation can drive stem cell reprogramming through 
TGF-ß, but an alternative outcome is collagen production and fibrosis (74). The 
contribution of microvascular loss to damage is likely to vary with dose and the affected 
tissue, but in the case of radiation-induced cardiovascular disease, fibrosis is a likely 
direct cause of cardiomyelopathy (68). Again, it is worth noting that the dose required to 
cause cardiac damage after WBI is generally less than that required to the heart alone 
(75-77). 
Secondary to the primary vascular effects, serum lipid values have been shown to 
change after WBI (68), likely as part of a metabolic switch associated with inflammation. 
As Baker et al. have described in their rat studies, “From 20 days after TBI, a 
progressive increase in total serum cholesterol was seen. Low-density lipoprotein 
cholesterol progressively increased to a peak value of 82 ± 8 mg/dl at 80 days compared 
with 13 ± 3 mg/dl in unirradiated rats. There was also a transient increase in triglyceride 
levels 40 days after TBI, which then declined to values present in unirradiated rats by 
100 days”. Similar changes in the metabolic profile were found in A-bomb survivors 
(78). Interestingly, changes in lipid profiles are also found in inflammatory breast cancer 
patients where they impact outcome after radiation therapy, as well as modulating 
radiosensitivity and tumor initiating cells (79). Lipid metabolism may therefore be an 
important target for countermeasure development. The general link between lipid 
metabolism and inflammation is only now becoming recognized through studies on 
obesity and diabetes, but, as such, this is likely to be a major part of an integrated 
radiation-induced disease profile. In support of this are the studies mentioned earlier on 
cardiovascular disease and the findings that cardiac disease and diabetes have been 
recorded as late effects of WBI in non-human primate models (80, 81). 
Some Vascular-Related Inflammatory Events and their Relevance to Countermeasures 

A brief examination of the vascular-related processes mentioned in the previous section 
reveals a number of potential targets for countermeasure development. Each will have 
different dose and time parameters. Unlike mortality endpoints, these processes are 
often hard to reliably quantify. 
Radiation-induced vascular permeability can be determined by assessing leakage of 
various tracers. The more popular tracers include fluorescein isothiocyanate (FITC)-
dextrans, which comes in various molecular sizes (82), albumin, Evans blue dye, 
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(99m)Tc-diethylenetriamine pentaacetic acid (83, 84), immunoglobulin G, or peroxidase 
(85). These tracers have different levels of sensitivity and are generally limited in that 
they require high doses of radiation to detect leakage. In addition, they give only semi-
quantitative assessments of localized changes in permeability. There are no other well-
established ways to measure systemic leakage after WBI except using proteomic 
changes in serum/plasma, whose complexity makes normal shotgun mass spectrometry 
approaches difficult. Dynamic changes in plasma volume after irradiation, especially 
after WBI, have to be taken into consideration and necessitate careful standardization 
(86-88). The use of sites that have natural body fluid filters with extravasation limits may 
be superior for this purpose, although the assays are less established. For example, in 
the eye, non-invasive flare photometry has been adapted for clinical assessment of 
proteomic changes in patients receiving WBI for bone marrow transplantation (89). 
Another model site is the kidney where vascular radiation damage in the glomerulus 
may result in proteinuria, measurable in the urine (90-92). The use of metabolomics 
also seems to offer advantages over more conventional assays (93). Nonetheless, 
despite the current uncertainties in providing real-time and meaningful determinations of 
the extent of radiation injury, the biological contributions that acute microvascular events 
make to the radiation-induced symptoms and disease stress the importance of using 
even basic vascular supportive care aimed at maintaining fluid and electrolyte balance. 
Inflammation is an obvious target for mitigator intervention in vascular and tissue 
events. Cytokines are readily assessed in tissues and plasma at the RNA or protein 
level, and there are many multiplex, generally antibody-based (ELISA), commercial kits 
available for this purpose with varying degrees of sophistication. Unfortunately, assay 
standardization is often left solely to the manufacturer and results will vary with the 
chosen system. In general, responses are observed with doses of more than a few 
gray, though rarely are they linear with respect to dose and they vary markedly with 
time. Indeed, the measurement of cytokines contains many pitfalls. For one, levels of 
most pro-inflammatory cytokines are normally very low in serum and they are heavily 
influenced by half-lives and rates of secretion. Another huge cause for concern are 
platelets that tend to get easily activated during sample handling and, as a result, 
release significant amounts of cytokines, distorting results enormously. Analyses of cell 
and tissue mRNA or protein levels by immunohistochemistry can be more informative, 
but many cytokines have cell-bound forms and knowledge of their juxtacrine effects in 
mediating cell-cell interactions is sparse. In such cases, genetic approaches may be 
best, but as noted earlier, radiation endpoints may be affected by genetic manipulations. 
In vitro assessment using isolated cell cultures is fraught with artefacts, being very 
dependent on the culture conditions. In isolation, cytokine expression levels do not form 
a good endpoint for mitigator studies, but genetic models and inhibitory approaches can 
certainly inform on the general role of cytokine-mediated pathways in radiation 
responses and their mitigation. Arguably, one of the more radiation-sensitive endpoints 
in the integrated response appears to be up-regulation of ICAM-1, which is seen with 
doses as low as 2 Gy. The relevance of this response is illustrated by the findings that 
radiation-induced vascular permeability and immune cell infiltration into tissues can be 
mitigated by administration of anti-ICAM-1 antibody (82, 94), although we know of no 
reports on this modifying ARS. In keeping with a role for vasculature damage in ARS, 
endothelial progenitor cell transplantation has been shown to mediate hematopoietic 
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recovery and mitigate against ARS (95). 
The activation and transmigration of the myeloid cell system following irradiation is also 
in line with the neutrophilia that is observed within hours, even after bone marrow-
ablating doses of WBI and has been seen in all species studied to date. Following 
radiation injury, immature promyelocytic and neutrophilic myelocytic cells are mobilized 
from the bone marrow, and myelopoiesis is initiated (3), shifting the myeloid:lymphoid 
balance to favor the former. Interestingly, neutrophils and platelets have long been 
considered as critical controllers of the hematopoietic ARS (1). These, and subsequent, 
observations have raised a number of possibilities with respect to countermeasures, in 
particular, suggesting that these populations might be valuable cellular targets for 
mitigation. Furthermore, given the role of myeloid cells discussed earlier, they may 
protect against syndromes other than H-ARS. Finally, monitoring the various 
subpopulations may act as a simple marker of countermeasure efficacy. Consistent with 
these criteria, recent work has shown that mobilized myeloid cells are an essential 
element in the radiomitigation activity of 4-nitrophenyl sulfonyl piperazines, compounds 
that have demonstrated efficacy in several models of radiation lethality (McBride, in 
prep). 
Encouragingly, over the past few decades, a plethora of agents have been used with 
varying degrees of success in the prevention or treatment of acute, transient and even 
chronic radiation injury, often with some degree of anti-inflammatory action (65). 
However, there is still a dire need to mitigate the less obvious acute or delayed radiation 
effects in order to achieve long-term satisfactory treatment. Efforts are needed to 
develop treatments for, or countermeasures against, the radiation “disease” that take 
into account the complex range of both the immediate and subsequent biological (and 
psychological) conditions that are seen following localized or whole body exposure in 
order to provide a complete therapeutic strategy. 
Short-term survivors of Radiation Exposures and Later Disease 
In this review, we have used dose-time relationships as a framework for the evolution of 
radiation diseases. Clearly, surviving WBI-related ARS, whether by luck or successful 
clinical intervention, does not necessarily result in long-term health, as late diseases 
can emerge with serious morbidities that decrease life-span (96-98). Waves of mortality 
emerge, as do waves of associated intercurrent molecular events that are most 
obviously observed as inflammatory responses. Examples of a direct proven causal 
linkage between inflammation and any mortality phase are few and far between, but 
there is ample evidence for myeloid cells being activated and mobilized within hours of 
WBI that seem to have a protective role in ARS and some other radiation diseases, with 
most the clear involvement being in H-ARS, where they are critical targets. In other 
ARS, and some other radiation mortalities, they seem to modify responses by other 
target cell populations. In contrast, for late morbidities and mortalities, systemic 
inflammation, and in particular cardiovascular disease, seems to provide both the 
conveyer belt and the underlying etiology for the radiation diseases. In essence, 
individuals lose the control mechanisms that hold their inflammatory responses in 
check, with a resultant pathology. 
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Our findings in mice surviving LD70/30 doses of WBI (Figure 4) are that they exhibit late 
morbidities including cardiomyelopathy, and inflammatory lesions in the lung, liver and 
kidney over the entire post-injury time period with several peaks in mortality that shorten 
their life-span (Figure 4). One interpretation is that they are undergoing radiation-
induced premature aging, which is not a new concept (99, 100), but we prefer the term 
multi-organ disease syndrome (MODS), which is a general rubric for these complex 
disease endpoints in humans, that also encompasses increased frailty which is also 
seen in radiation-induced late disease (103). The good news is that, in our hands, 50% 
of the mice receiving a regimen of novel mitigators after LD70/30 doses of WBI were 
alive 1 year, compared with 0% of controls, and although late mortality was still present 
after ARS mitigation, it was much decreased in incidence. 
Although this form of life shortening has often focused on carcinogenesis as a cause, 
non-cancer-related chronic conditions that tend to occur very late are being increasingly 
recognized as being of equal, if not greater, importance. Similar morbidities and 
mortality are also reported in mice receiving WBI plus bone marrow rescue (7) or LTI 
(7), in WBI non-human primates (80, 81), in A-bomb survivors (101, 102), and in 
accidents, such as at Tokai-mura (103, 104). In the clinic, recent advances in cancer 
therapy have resulted in encouraging increases in survivorship, but this has come at a 
cost. Increased late effects and life shortening are perhaps most obvious in bone 
marrow transplant patients (8, 9), but the phenomenon likely results from many types of 
cancer therapy. The similarities with frailty in the transplant population is of interest. 
Frailty in this population has been ascribed to chronic inflammation, cardiovascular 
disease, metabolic syndrome, low oxygen utilization, decreased physiologic reserve, 
and diminished resistance to stressors (9). Quality of life is often impacted in the form of 
weight loss, easy exhaustion, muscular weakness, decreased walking speed, etc.. In all 
these clinical situations, late debilitating diseases emerge that are of uncertain 
etiopathogenesis and incidence, and have few treatment options. Obviously, radiation 
mitigators that would prevent late chronic conditions would be of great value in the 
clinic, especially for survivors of childhood cancers, of bone marrow transplantation, of 
any intense anti-cancer regime, and possibly many other chronic inflammatory 
diseases. 
Importantly, the experimental evidence suggests that radiation doses that are 
insufficient to cause ARS or subacute pneumonitis are sufficient to cause late disease, 
the incidence of which is exaggerated at low dose rate (7). Because late effects can 
occur after lower radiation doses than those that cause ARS, mitigation of one condition 
might actually allow another radiation-induced disease to become critical with time, 
while mitigation can also allow previously unrecognized syndromes that were masked 
by early lethality to emerge. 
One major question that arises with respect to late disease is when is intervention 
indicated. The current work with countermeasures is focused on mitigators being given 
shortly after radiation exposure, which, in our hands, results in efficacy against both 
ARS and late disease. However, late disease occurs rather more capriciously than ARS 
and there will be a temptation to leave the until the first signs and symptoms and it is 
possible that, at this late stage, symptom management is the only option. Biomarkers 
for chronic inflammation such as IL-6 and C-reactive protein may help define those at 
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risk of late complications, as might myeloid cell profiling, but early changes in 
biomarkers may not be informative. 
Unlike ARS, there is a degree of heterogeneity in which individuals develop chronic 
radiation disease that is not fully understood. Our data suggest that late disease is 
associated with radiation-induced skewing of the immune system towards myeloid cell 
expansion and activation, but it is also possible that MODS may be precipitated by 
certain post-radiation events, such as infections, physical damage, or other stresses 
that might tip the balance in individuals who have depleted reserves in terms of their 
ability to control inflammation. The microbiome is particularly interesting and targetable 
potential drivers of these responses. Even non-pathogenic microbes can shape the 
response of a previously irradiated intestine, acting perhaps through Toll-like receptors. 
Recently, radiation has been shown to influence the composition of the microbiome 
(37), and it seems likely that the microbiome that is generated will play a role in both 
acute and late radiation disease. The exact impact of this has yet to be evaluated, but it 
is crystal clear that the microbiome can no longer be ignored. As such, an 
understanding of its influence needs to be incorporated into countermeasure 
development. 
In conclusion, countermeasure development can not only be concerned with ARS, but 
must take into account the factors that influence the long-term consequences of 
radiation disease and its temporal evolution. Late radiation effects are in many ways 
more insidious than ARS and can result in serious debilitating morbidities and a shorter 
life. The underlying pathology is suggestive of chronic inflammation linked to an 
imbalanced immune system that fails to control in particular myeloid cell expansion and 
activation, but no doubt other immune components play roles; many aspects of the 
etiopathogenesis of these late effects are still unclear. The challenge to mitigator 
development is to take such late effects into account even when ARS is the initial 
concern. So far, the evidence suggests that these late effects can be mitigated to an 
extent by delivery of mitigators soon after exposure, but this may not be the case for all 
mitigators or all aspects of the disease. 
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