Augmented designs to assess immune response in vaccine trials

Dean Follmann
NIAID

VAX004

- First Phase III trial of an HIV vaccine
- 5403 people participated
- Measured antibody response to vaccine two weeks after vaccination in *vaccine* group.
- Looked at risk of infection as a function of antibody response.

VAX004: Relative Risk of Infection Within Vaccine Group

IMMUNE RESPONSE QUARTILE

GROUP	Weak	Modest	Good	Best	
Vaccine	1.00	.43*	.34*	.29*	

VAX004: Relative Risk of Infection Both Groups

IMMUNE RESPONSE QUARTILE

GROUP	Weak	Modest	Good	Best	
Placebo	?	?	?	?	1.00
Vaccine	1.67*	.98	.87	.74	

What does this mean?

- Association: The vaccine is useless, but those individuals who could mount a strong immune response are better able to remain uninfected.
- Causation: The vaccine tends to cause infections in those who have poor immune response, but may prevent infections in those with good immune responses.

Suppose

- Phase III study with infection rates 10% placebo, 8% vaccine group Risk gradient seen like VAX004.
- After celebration over, tinker with vaccine to boost specific immune responses
- Could this be a waste of time?

Goal

- Replace the ?s with numbers. Want to know if immune response is associated or causative
- We'll discuss two different and complementary approaches
 - Baseline Irrelevant Vaccination (BIV)
 - Closeout Placebo Vaccination (CPV)
- These can be used together or separately.

Baseline Irrelevant Vaccination (BIV)

- At baseline, measure something(s) correlated with X e.g. inoculate everyone with rabies vaccine.
- Shortly afterwards, measure immune response to rabies vaccine, say W.
- Randomization ensures (X,W) same in both groups.
- Use a placebo patient's W to impute X.

Immune response to Rabies Vaccine

Closeout Placebo Vaccination

- At the end of the trial, inoculate placebo uninfecteds with HIV vaccine.
- Shortly after inoculation, measure immune response X_C .
- Pretend X_C is what we would have seen, had we inoculated at baseline ie = X_0 .

Usual Trial

Immune Response Quartiles

Group	Outcome	Weak	Modest	Good	Best	Total
Vaccine	Uninfected	70	85	90	95	340
	Infected	30	15	10	5	60
	Total	100	100	100	100	400
Placebo	Uninfected	?	?	?	?	340
	Infected	?	?	?	?	60
	Total	?	?	?	?	400

Usual Trial Exploiting Randomization

Immune Response Quartiles

Group	Outcome	Weak	Modest	Good	Best	Total
Vaccine	Uninfected	70	85	90	95	340
	Infected	30	15	10	5	60
	Total	100	100	100	100	400
Placebo	Uninfected	?	?	?	?	340
	Infected	?	?	?	?	60
	Total	~100	~100	~100	~100	400

Trial with CPV (association)

Immune Response Quartiles

Group	Outcome	Weak	Modest	Good	Best	Total
Vaccine	Uninfected	70	85	90	95	340
	Infected	30	15	10	5	60
	Total	100	100	100	100	400
Placebo	Uninfected	71	84	92	93	340
	Infected	~29	~16	~8	~7	60
	Total	~100	~100	~100	~100	400

Schematic of BIV& CPV

Assumptions

- No noncompliance
- No missing data
- Infections start after X_0 is measured
- X_{0i} can be viewed as a baseline covariate
- Time constancy of immune response:

$$X_{Ci} = X_{0i}$$

What is X?

- X is the *potential* HIV specific immune response to HIV vaccination
- Vaccine: What a patient *did* produce in response to the vaccine. (*realized*)
- Placebo: What a patient *would* produce in response to the vaccine. (*unrealized*)

Probit Regression

- Assume the probability of infection varies smoothly with X.
 - Placebo Group:

$$P(Y = 1 | X) = \Phi(\beta_0 + \beta_2 X)$$

– Vaccine Group:

$$P(Y = 1 | X) = \Phi(\beta_0 + \beta_1 + (\beta_2 + \beta_3)X)$$

Maximum likelihood estimation

- We need X for P(Y=1 | X,Z)
 - Vaccine group, use X₀
 - Placebo Uninfected use X_C
 - Placebo Infecteds: Integrate P(Y=1 | X, 0)
 with respect to the distribution of X|W

$$p^{*}(w) = E[\Phi(\beta_{0} + \beta_{2} X)] = \Phi\left(\frac{\beta_{0} + \beta_{2}\mu(w)}{\sqrt{1 + (\beta_{2}\sigma^{*})^{2}}}\right)$$

Likelihood

Vaccine contribution

$$\Pi_{i \text{ in } V}$$
 $p_v(x_{0i})^{y(i)}$ $(1 - p_v(x_{0i}))^{1-y(i)}$

Placebo contribution

$$\Pi_{i \text{ in P(U)}} (1 - p_p(x_{Ci}))^{1-y(i)} \Pi_{i \text{ in P(I)}} p^*(w_i)^{y(i)}$$

• x_{0i} w_i at baseline, x_{Ci} at closeout

Maximum Likelihood

- Likelihood maximized using R
- Bootstrap used to estimate standard errors of parameters for Wald Tests.

Simulation

- N=1000 per group
- Infection rates P, V 10%, 8%
- Causation
 - Gradient in Vaccine group, none in placebo
- Association
 - Similar gradient in both groups.
- X,W correlation 0, .25, .50, .75, 1

Causation: P(infection) by model and in quartiles

Association: P(infection) by model and in quartiles

Results

- Measure performance by sample variance.
- Association Scenario $\rho = .5$

	Variance of	Relative
Design	β_2 estimate	Variance
CPV	.0575	15.5
BIV	.0199	5.4
CPB+BIV	.0145	3.9
X known	.0037	1.0

Association scenario beta_2 Association scenario beta_3 25 25 Relative sample variand Relative sample varia 20 20 15 15 10 10 5 5 0.00 0.50 1.00 0.00 0.50 1.00 Correlation between X &V Correlation between X &V Causation scenario beta_2 Causation scenario beta_3 25 25 Relative sample variand Relative sample variand 20 20 15 15 10 10 5 5 0.00 0.50 1.00 0.50 1.00 0.00 Correlation between X &V Correlation between X &V

Performance depends on ρ

- If $\rho > .50$, little need for CPV
- If ρ = .25, both CPV and BIV are helpful.
- If $\rho = 0$, BIV useless.
- If $\rho = 1$, CPV useless.

Statistical Power BIV alone

• $\rho = .5$ N=2000/5000 180/450 infections

$oldsymbol{eta}_2$	$oldsymbol{eta_3}$	Scenario
.86/1.00	.03/.05	Association
.04/.05	.78/.99	Causation
.57/.95	.35/.65	Both

Is an improved vaccine good enough?

- Suppose Vaccine A had 20% VE
- Small studies of A^* showed the immune response is increased by Δ .
- Will this be enough to launch a new trial?
- Using our statistical model, we can estimate the VE for A*, say VE*. Is it worth spending \$100M?

Go/No go decision based on VE*, not Δ .

Summary

- BIV and CPV can be added onto standard vaccine trials to replace the "?"s in the placebo group.
- Vaccine development focuses on cultivating the best immune response. But
 - immune response may be partly causative
 - different responses may be more/less causative
- Important to consider augmented designs to properly assess role of immune response
- Could incorporate BIV in phase 1 or 2 trials to assess correlation.

Thanks

- Peter Gilbert
- Michael Fay
- Cliff Lane
- Ed Tramont