Contact Information
Office/Contact: Aleen Khodabakhshian
Phone: 310-557-3798
Email: akhodabakhshian@mednet.ucla.edu
Office/Contact: Aleen Khodabakhshian
Phone: 310-557-3798
Email: akhodabakhshian@mednet.ucla.edu
Office/Contact: Lina Castro, PHM, MPH, M(ASCP)CM, TS (ABB)
Phone: 415-554-2800
Email: lina.castro@sfdph.org
Office/Contact: Alexandra Fernandez-Desoto
Phone: 858-657-8390
Email: alf013@health.ucsd.edu
Submit a Media Request
Contact the NIAID News & Science Writing Branch.
Submit a Media Request
Contact the NIAID News & Science Writing Branch.
Philosophy - Advancing Human Health Through Immunological Research:
Secondary Lymphoid Organ Remodeling and Pathogen-Immune cell Interactions:
Extracellular Signaling, GPCR Signal Transduction and Immune Modulation:
Experimental Approaches:
Park C, Hwang IY, Yan SL, Vimonpatranon S, Wei D, Van Ryk D, Girard A, Cicala C, Arthos J, Kehrl JH. Murine alveolar macrophages rapidly accumulate intranasally administered SARS-CoV-2 Spike protein leading to neutrophil recruitment and damage. Elife. 2024 Mar 20;12:RP86764.
Park C, Kehrl JH. An integrin/MFG-E8 shuttle loads HIV-1 viral-like particles onto follicular dendritic cells in mouse lymph node. Elife. 2019 Dec 6;8:e47776.
Guzzo C, Ichikawa D, Park C, Phillips D, Liu Q, Zhang P, Kwon A, Miao H, Lu J, Rehm C, Arthos J, Cicala C, Cohen MS, Fauci AS, Kehrl JH, Lusso P. Virion incorporation of integrin α4β7 facilitates HIV-1 infection and intestinal homing. Sci Immunol. 2017 May 12;2(11):eaam7341.
Park C, Arthos J, Cicala C, Kehrl JH. The HIV-1 envelope protein gp120 is captured and displayed for B cell recognition by SIGN-R1(+) lymph node macrophages. Elife. 2015 Aug 10;4:e06467.
Park C, Hwang IY, Sinha RK, Kamenyeva O, Davis MD, Kehrl JH. Lymph node B lymphocyte trafficking is constrained by anatomy and highly dependent upon chemoattractant desensitization. Blood. 2012 Jan 26;119(4):978-89.
Sinha RK*, Park C*, Hwang IY, Davis MD and Kehrl JH. B lymphocytes Exit Lymph Nodes through Cortical Lymphatic Sinosoids Near to Lymph Nodes Follicles by a Mechanism Independent of S1P-Mediated Chemotaxis. Immunity. 2009 Feb 18. [Epub ahead of print] (*Co-first publication)
The Neurovirology Unit conducts research on the acute and long-term complications associated with human alphaherpesvirus infections and pulmonary infections caused by coronaviruses and influenza.
Using transgenic animal models and integrating approaches from molecular virology, neurobiology, and immunology, we investigate the mechanisms underlying viral pathogenesis in the central nervous system, which particularly involves analyzing roles of immunomodulatory host factors to understand their roles in pathogenesis, neuroprotection, and potentiating antiviral immunity. While studying different aspects of antiviral immunity, we also focus on understanding the neurological regulation of antiviral immunity, neuroinflammation, and the long-term manifestations of viral infection, such as neurodegeneration and cognitive decline using machine learning-based behavioral approaches.
Additionally, the Neurovirology Unit explores the interactions between viral proteins, host factors, and immune responses that drive differential disease severity observed in humans, paving the way for innovative therapeutic strategies. We are also committed to advancing human brain and lung organoid models to recapitulate disease phenotypes in humans and thereby enhance our understanding of viral disease mechanisms.
Suryawanshi RK, Chen IP, Ma T, Syed AM, Brazer N, Saldhi P, Simoneau CR, Ciling A, Khalid MM, Sreekumar B, Chen PY, Kumar GR, Montano M, Gascon R, Tsou CL, Garcia-Knight MA, Sotomayor-Gonzalez A, Servellita V, Gliwa A, Nguyen J, Silva I, Milbes B, Kojima N, Hess V, Shacreaw M, Lopez L, Brobeck M, Turner F, Soveg FW, George AF, Fang X, Maishan M, Matthay M, Morris MK, Wadford D, Hanson C, Greene WC, Andino R, Spraggon L, Roan NR, Chiu CY, Doudna JA, Ott M. Limited cross-variant immunity from SARS-CoV-2 Omicron without vaccination. Nature. 2022 Jul;607(7918):351-355.
Ryu JK, Yan Z, Montano M, Sozmen EG, Dixit K, Suryawanshi RK, Matsui Y, Helmy E, Kaushal P, Makanani SK, Deerinck TJ, Meyer-Franke A, Rios Coronado PE, Trevino TN, Shin MG, Tognatta R, Liu Y, Schuck R, Le L, Miyajima H, Mendiola AS, Arun N, Guo B, Taha TY, Agrawal A, MacDonald E, Aries O, Yan A, Weaver O, Petersen MA, Meza Acevedo R, Alzamora MDPS, Thomas R, Traglia M, Kouznetsova VL, Tsigelny IF, Pico AR, Red-Horse K, Ellisman MH, Krogan NJ, Bouhaddou M, Ott M, Greene WC, Akassoglou K. Fibrin drives thromboinflammation and neuropathology in COVID-19. Nature. 2024 Sep;633(8031):905-913.
Suryawanshi RK, Patil CD, Agelidis A, Koganti R, Ames JM, Koujah L, Yadavalli T, Madavaraju K, Shantz LM, Shukla D. mTORC2 confers neuroprotection and potentiates immunity during virus infection. Nat Commun. 2021 Oct 14;12(1):6020.
Suryawanshi RK, Patil CD, Agelidis A, Koganti R, Yadavalli T, Ames JM, Borase H, Shukla D. Pathophysiology of reinfection by exogenous HSV-1 is driven by heparanase dysfunction. Sci Adv. 2023 Apr 28;9(17):eadf3977.
Suryawanshi RK, Jaishankar P, Correy GJ, Rachman MM, O'Leary PC, Taha TY, Zapatero-Belinchón FJ, McCavittMalvido M, Doruk YU, Stevens MGV, Diolaiti ME, Jogalekar MP, Richards AL, Montano M, Rosecrans J, Matthay M, Togo T, Gonciarz RL, Gopalkrishnan S, Neitz RJ, Krogan NJ, Swaney DL, Shoichet BK, Ott M, Renslo AR, Ashworth A, Fraser JS. The Mac1 ADP-ribosylhydrolase is a Therapeutic Target for SARS-CoV-2. eLife14:RP103484.
Suryawanshi R, Ott M. SARS-CoV-2 hybrid immunity: silver bullet or silver lining?. Nat Rev Immunol. 2022 Oct;22(10):591-592.