Safety and Immunogenicity of Stabilized CH505 TF chTrimer Vaccination in Adults Living With HIV-1 on Suppressive Antiretroviral Therapy

The objective of this study is to assess the safety, tolerability, and immunogenicity of a vaccination with stabilized CH505 TF chTrimer admixed with 3M-052-AF + Aluminum hydroxide (Alum), to assess the effect of CH505 TF chTrimer vaccine as a therapeutic vaccine in adults living with HIV-1 on suppressive antiretroviral therapy (ART) with the aim of inducing new HIV-1 Envelope (Env) B-cell neutralizing immune responses.

Contact Information

Office/Contact: Aleen Khodabakhshian
Phone: 310-557-3798
Email: akhodabakhshian@mednet.ucla.edu
 

First-in-Human PfSPZ-LARC2 Vaccination/CHMI

The primary objective of this study is to assess the tolerability and safety of administration of PfSPZ-LARC2 Vaccine, with special attention to the adequacy of attenuation.

Phase 1 Study on Bioavailability, Food Effect, and Drug-Drug Interaction of ALG-097558 Tablets in Healthy Volunteers

The aim of this multi-part Phase 1 study is to evaluate the drug-drug interaction (DDI) potential of ALG-097558 via co-administration with a P-gp substrate (dabigatran) and a CYP3A4 inhibitor/P-gp inhibitor (itraconazole).

Master Protocol for Evaluating Multiple Infection Diagnostics for Ciprofloxacin-Resistant Neisseria Gonorrhoeae

The goal of this study is to learn if a few investigational tests can correctly find the gene mutation (mutant allele gyrA 91F) that predicts ciprofloxacin resistance in clinical specimens that harbor Neisseria gonorrhoeae.

Contact Information

Office/Contact: Lina Castro, PHM, MPH, M(ASCP)CM, TS (ABB)
Phone: 415-554-2800
Email: lina.castro@sfdph.org
 

Targeted Investigation of Microbiome 2 Treat Atopic Dermatitis (TIME-2)

The primary safety objective of this study is to compare the safety profile of ShA9 to placebo (vehicle) over 14 weeks of application, which includes an initial two-week period of co-treatment with topical corticosteroids (TCS).

Contact Information

Office/Contact: Alexandra Fernandez-Desoto
Phone: 858-657-8390
Email: alf013@health.ucsd.edu
 

Preclinical Models of Infectious Disease Microphysiological Systems (MPS)

NIAID provides preclinical services using human cell-based MPS and organoids to test promising therapeutic candidates that combat viruses of biodefense (pandemic) concern.

NIH-Sponsored Trial of Lassa Vaccine Opens

Tecovirimat Is Safe but Ineffective as Treatment for Clade II Mpox

Monotherapy with the antiviral drug tecovirimat was safe but ineffective as an mpox treatment in an international clinical trial.

Contact

Submit a Media Request

Contact the NIAID News & Science Writing Branch.

301-402-1663
niaidnews@niaid.nih.gov
All Media Contacts

Chung Park, M.S., Ph.D.

Section or Unit Name
B-Cell Molecular Immunology Section
Exclude from directory
Off
Section/Unit: Location
This Researcher/Clinician’s Person Page
Parent Lab/Program
Program Description

Philosophy - Advancing Human Health Through Immunological Research:

  • Enhance understanding of immune system regulation in health and disease
  • Provide mechanistic insights into disease pathology to inform therapeutic strategies
  • Support translational research to develop targeted treatments for immune-related disorders

Secondary Lymphoid Organ Remodeling and Pathogen-Immune cell Interactions:

  • Investigate structural remodeling of lymph nodes in immune responses
  • Examine chemokine receptor sensitivity modulation by RGS proteins
  • Characterize cellular networks facilitating virus envelope protein transfer

Extracellular Signaling, GPCR Signal Transduction and Immune Modulation:

  • Investigate chemokine receptor-mediated signaling in immune cell regulation
  • Examine heterotrimeric G-protein activation in lymphocyte function
  • Study molecular mechanisms of G-protein-coupled receptor (GPCR) signaling
  • Analyze how GPCR signaling orchestrates immune responses and cell dynamics

Experimental Approaches:

  • Utilize genetically engineered murine models
  • Employ intravital two-photon laser scanning microscopy (TP-LSM) and high-throughput flow cytometry
Selected Publications

Park C, Hwang IY, Yan SL, Vimonpatranon S, Wei D, Van Ryk D, Girard A, Cicala C, Arthos J, Kehrl JH. Murine alveolar macrophages rapidly accumulate intranasally administered SARS-CoV-2 Spike protein leading to neutrophil recruitment and damage. Elife. 2024 Mar 20;12:RP86764.

Park C, Kehrl JH. An integrin/MFG-E8 shuttle loads HIV-1 viral-like particles onto follicular dendritic cells in mouse lymph node. Elife. 2019 Dec 6;8:e47776.

Guzzo C, Ichikawa D, Park C, Phillips D, Liu Q, Zhang P, Kwon A, Miao H, Lu J, Rehm C, Arthos J, Cicala C, Cohen MS, Fauci AS, Kehrl JH, Lusso P. Virion incorporation of integrin α4β7 facilitates HIV-1 infection and intestinal homing. Sci Immunol. 2017 May 12;2(11):eaam7341.

Park C, Arthos J, Cicala C, Kehrl JH. The HIV-1 envelope protein gp120 is captured and displayed for B cell recognition by SIGN-R1(+) lymph node macrophages. Elife. 2015 Aug 10;4:e06467.

Park C, Hwang IY, Sinha RK, Kamenyeva O, Davis MD, Kehrl JH. Lymph node B lymphocyte trafficking is constrained by anatomy and highly dependent upon chemoattractant desensitization. Blood. 2012 Jan 26;119(4):978-89.

Sinha RK*, Park C*, Hwang IY, Davis MD and Kehrl JH. B lymphocytes Exit Lymph Nodes through Cortical Lymphatic Sinosoids Near to Lymph Nodes Follicles by a Mechanism Independent of S1P-Mediated Chemotaxis. Immunity. 2009 Feb 18. [Epub ahead of print] (*Co-first publication)

Visit PubMed for a complete publication listing.

Major Areas of Research
  • Lymphocyte trafficking and cellular migration dynamics from homeostasis to pathological conditions
  • B-cell signaling, G-protein signaling pathways, and the regulatory role of RGS proteins  
  • Mechanisms underlying complex cellular immune responses induced by diverse antigens and pathogens 

Rahul K. Suryawanshi, Ph.D.

Section or Unit Name
Neurovirology Unit
Exclude from directory
Off
Section/Unit: Year Established
Section/Unit: Location
This Researcher/Clinician’s Person Page
Program Description

The Neurovirology Unit conducts research on the acute and long-term complications associated with human alphaherpesvirus infections and pulmonary infections caused by coronaviruses and influenza.

Using transgenic animal models and integrating approaches from molecular virology, neurobiology, and immunology, we investigate the mechanisms underlying viral pathogenesis in the central nervous system, which particularly involves analyzing roles of immunomodulatory host factors to understand their roles in pathogenesis, neuroprotection, and potentiating antiviral immunity. While studying different aspects of antiviral immunity, we also focus on understanding the neurological regulation of antiviral immunity, neuroinflammation, and the long-term manifestations of viral infection, such as neurodegeneration and cognitive decline using machine learning-based behavioral approaches.

Additionally, the Neurovirology Unit explores the interactions between viral proteins, host factors, and immune responses that drive differential disease severity observed in humans, paving the way for innovative therapeutic strategies. We are also committed to advancing human brain and lung organoid models to recapitulate disease phenotypes in humans and thereby enhance our understanding of viral disease mechanisms.

Selected Publications

Suryawanshi RK, Chen IP, Ma T, Syed AM, Brazer N, Saldhi P, Simoneau CR, Ciling A, Khalid MM, Sreekumar B, Chen PY, Kumar GR, Montano M, Gascon R, Tsou CL, Garcia-Knight MA, Sotomayor-Gonzalez A, Servellita V, Gliwa A, Nguyen J, Silva I, Milbes B, Kojima N, Hess V, Shacreaw M, Lopez L, Brobeck M, Turner F, Soveg FW, George AF, Fang X, Maishan M, Matthay M, Morris MK, Wadford D, Hanson C, Greene WC, Andino R, Spraggon L, Roan NR, Chiu CY, Doudna JA, Ott M. Limited cross-variant immunity from SARS-CoV-2 Omicron without vaccination. Nature. 2022 Jul;607(7918):351-355.

Ryu JK, Yan Z, Montano M, Sozmen EG, Dixit K, Suryawanshi RK, Matsui Y, Helmy E, Kaushal P, Makanani SK, Deerinck TJ, Meyer-Franke A, Rios Coronado PE, Trevino TN, Shin MG, Tognatta R, Liu Y, Schuck R, Le L, Miyajima H, Mendiola AS, Arun N, Guo B, Taha TY, Agrawal A, MacDonald E, Aries O, Yan A, Weaver O, Petersen MA, Meza Acevedo R, Alzamora MDPS, Thomas R, Traglia M, Kouznetsova VL, Tsigelny IF, Pico AR, Red-Horse K, Ellisman MH, Krogan NJ, Bouhaddou M, Ott M, Greene WC, Akassoglou K. Fibrin drives thromboinflammation and neuropathology in COVID-19. Nature. 2024 Sep;633(8031):905-913.

Suryawanshi RK, Patil CD, Agelidis A, Koganti R, Ames JM, Koujah L, Yadavalli T, Madavaraju K, Shantz LM, Shukla D. mTORC2 confers neuroprotection and potentiates immunity during virus infection. Nat Commun. 2021 Oct 14;12(1):6020.

Suryawanshi RK, Patil CD, Agelidis A, Koganti R, Yadavalli T, Ames JM, Borase H, Shukla D. Pathophysiology of reinfection by exogenous HSV-1 is driven by heparanase dysfunction. Sci Adv. 2023 Apr 28;9(17):eadf3977.

Suryawanshi RK, Jaishankar P, Correy GJ, Rachman MM, O'Leary PC, Taha TY, Zapatero-Belinchón FJ, McCavittMalvido M, Doruk YU, Stevens MGV, Diolaiti ME, Jogalekar MP, Richards AL, Montano M, Rosecrans J, Matthay M, Togo T, Gonciarz RL, Gopalkrishnan S, Neitz RJ, Krogan NJ, Swaney DL, Shoichet BK, Ott M, Renslo AR, Ashworth A, Fraser JS. The Mac1 ADP-ribosylhydrolase is a Therapeutic Target for SARS-CoV-2. eLife14:RP103484.

Suryawanshi R, Ott M. SARS-CoV-2 hybrid immunity: silver bullet or silver lining?. Nat Rev Immunol. 2022 Oct;22(10):591-592.

Major Areas of Research
  • Acute and post-acute neuropathies of virus infections
  • Impact of genetics on disease severity
  • Host-virus interactions and its effect on antiviral immunity
  • Human brain and lung organoid models to study virus infection