NIH-Funded Clinical Trial Will Evaluate New Dengue Therapeutic

A Phase 2 clinical trial will test the safety and efficacy of an experimental treatment for dengue, a viral disease transmitted by mosquitoes.

Contact

Submit a Media Request

Contact the NIAID News & Science Writing Branch.

301-402-1663
niaidnews@niaid.nih.gov
All Media Contacts

NIH Researchers Discover Novel Class of Anti-Malaria Antibodies

New antibodies that bind to a previously untargeted portion of the malaria parasite could lead to new monoclonal antibody treatments and vaccines for malaria.

Contact

Submit a Media Request

Contact the NIAID News & Science Writing Branch.

301-402-1663
niaidnews@niaid.nih.gov
All Media Contacts

NIH Awards Establish Pandemic Preparedness Research Network

The Research and Development of Vaccines and Monoclonal Antibodies for Pandemic Preparedness network—called ReVAMPP—will focus its research efforts on “prototype pathogens,” representative pathogens from virus families known to infect humans, and high-priority pathogens that have the potential to cause deadly diseases. The pandemic preparedness research network will conduct research on high-priority pathogens most likely to threaten human health with the goal of developing effective vaccines and monoclonal antibodies.

Contact

Submit a Media Request

Contact the NIAID News & Science Writing Branch.

301-402-1663
niaidnews@niaid.nih.gov
All Media Contacts

Candidate Malaria Vaccine Provides Lasting Protection in NIH-Sponsored Trials

Two National Institutes of Health (NIH)-supported trials of an experimental malaria vaccine in healthy Malian adults found that all three tested regimens were safe.

Contact

Submit a Media Request

Contact the NIAID News & Science Writing Branch.

301-402-1663
niaidnews@niaid.nih.gov
All Media Contacts

NIAID Raises Awareness to Malaria-like Diseases in W. Africa

NIAID Now |

NIAID Raises Awareness to Malaria-like Diseases in W. Africa

Dengue, Zika, Chikungunya Viruses in Mali; Disease Likely Misdiagnosed

NIAID scientists and colleagues have identified dengue, Zika and chikungunya viruses in the West African country of Mali, where health care providers likely misdiagnose patients with illness from those viruses due to unavailable diagnostic tools. Because malaria is the most common fever-causing illness in rural sub-Saharan Africa, most medical workers presume patients with a fever have malaria. The primary cause of all four infectious diseases is a mosquito bite.

Records from the Malian Health Information System show that about one-third of all patient visits to health care facilities are related to malaria, with 2.37 million clinical cases.

A new study from NIAID’s Rocky Mountain Laboratories and the University of Sciences, Techniques and Technologies in Mali aims to help spread information to medical workers about the existence of the additional viral diseases. Ideally, circulating the information will help them obtain the necessary diagnostics.

The study, published in The American Journal of Tropical Medicine and Hygiene, involved 600 residents, 200 from each of the southern Malian communities of Soromba, Bamba and Banzana. The scientists detected antibodies to dengue virus in the blood of 77.2% of the residents tested; to Zika virus in 31.2%, and to chikungunya virus in 25.8%. They detected at least one of the three viruses in 84.9% of participants, meaning just 15.1% tested negative to any of the three viruses.

Evidence of the parasites that cause malaria was found in 44.5% of those tested. Unlike malaria, however, where most cases are found in children under age 14, residents over age 50 were most likely to have been exposed to dengue, Zika or chikungunya viruses. 

“Despite the high exposure risk to dengue virus in southern Mali, dengue fever cases have rarely been reported,” the researchers write. “This is likely due to the lack of diagnostic testing and the biased clinical focus on malaria in the region. Awareness of dengue virus as a cause of febrile illness needs to be urgently established in medical communities as an important public health measure.”

The scientists are hoping data from a more in-depth clinical study that just ended will provide additional details about the prevalence of these viruses in Mali. They also are planning to examine patients who have undiagnosed fevers to establish infection rates.

NIAID scientists are investigating dengue, Zika and chikungunya viruses to try and develop preventive and therapeutic treatment options, none of which exist.

Reference: S Bane, et alSeroprevalence of Arboviruses in a Malaria Hyperendemic Area in Southern MaliThe American Journal of Tropical Medicine and Hygiene DOI: 10.4269/ajtmh.23-0803 (2024).

Contact Information

Contact the NIAID Media Team.

301-402-1663
niaidnews@niaid.nih.gov

Search NIAID Blog

NIAID Research Team Develops 2nd Model of Crimean-Congo Fever

NIAID Now |

A NIAID research team has developed an additional nonhuman primate study model for Crimean-Congo hemorrhagic fever (CCHF), providing an alternative for development of critically needed vaccines and therapeutics. They hope the effort, described in a new study published in npj Vaccines, will lead to a widely available replicating RNA-based vaccine that they are testing against CCHF. In some outbreaks CCHF has had a case fatality rate up to 40%.

Cynomolgus macaques (CM), which typically develop mild to moderate CCHF disease, are the preferred model available to study how the virus causes infection and disease in people. During the COVID-19 pandemic, however, CMs were prioritized for other research, and scientists at NIAID’s Rocky Mountain Laboratories (RML) sought to develop an alternative model using rhesus macaques (RM) to continue promising pre-clinical work on a CCHF vaccine.

CCHF virus primarily is spread by Hyalomma ticks throughout Africa, the Middle East, Asia and parts of Europe. The disease, first described in 1944, infects up to 15,000 people annually, according to the World Health Organization. About 1 in 8 of those who are infected develop severe disease, which leads to about 500 deaths each year. A vaccine developed in 1974 in Bulgaria is available in some places but has not been approved by the U.S. Food and Drug Administration or the European Medicines Agency. The World Health Organization lists CCHF virus as a priority pathogen for development of vaccines.

The RML group in Hamilton, Montana, has worked with University of Washington and HDT Bio collaborators in Seattle for about 6 years on developing and evaluating the replicating RNA vaccine platform for SARS-CoV-2 and CCHFV. A collaboration between NIAID, HDT Bio and the University of Texas Medical Branch was recently awarded more than $80 million dollars in funding by the Department of Defense to advance the replicating RNA vaccine for CCHFV and Nipah virus into human clinical trials.

The researchers decided to try and adapt their CM study model to infect RMs. CMs and RMs are the two most commonly used research animals among the 22 different macaque species. RMs infected with CCHFV developed mild-to-moderate disease, similar to the CM model and consistent with mild-to-moderate disease in humans. 

The scientists then used a prime-boost schedule to show that the experimental vaccine provided six infected RMs with a protective immune response that controlled CCHF virus. The results are consistent with their findings using CMs and support continued advancement of this vaccine into human trials.

Future work with the vaccine is planned to try and pinpoint how it triggers immune responses in the animals and provides protection from CCHF virus infection. They also plan to explore which animal models will most accurately predict how the vaccine might act in people.

References:

D Hawman, et al. A replicating RNA vaccine confers protection in a rhesus macaque model of Crimean-Congo hemorrhagic fever. npj Vaccines DOI: 10.1038/s41541-024-00887-z (2024).

S Leventhal, et alReplicating RNA vaccination elicits an unexpected immune response that efficiently protects mice against lethal Crimean-Congo hemorrhagic fever virus challenge. eBio Medicine DOI: https://doi.org/10.1016/j.ebiom.2022.104188 (2022).

E Haddock, et al. A cynomolgus macaque model for Crimean–Congo haemorrhagic fever. Nature Microbiology DOI: 10.1038/s41564-018-0141-7 (2018).

Contact Information

Contact the NIAID Media Team.

301-402-1663
niaidnews@niaid.nih.gov

Search NIAID Blog

Experimental NIH Malaria Monoclonal Antibody Protective in Malian Children

One injected dose of an experimental malaria monoclonal antibody was 77% effective against malaria disease in children in Mali during the country’s six-month malaria season, according to the results of a mid-stage clinical trial. The trial assessed an investigational monoclonal antibody developed by scientists at the National Institutes of Health (NIH), and results appear in The New England Journal of Medicine.

Contact

Submit a Media Request

Contact the NIAID News & Science Writing Branch.

301-402-1663
niaidnews@niaid.nih.gov
All Media Contacts

Building a Better Malaria Vaccine—NIAID Researchers Design a Paradigm-Busting Candidate

NIAID Now |

For years, malaria vaccine developers have focused on thwarting a key moment in the malaria parasite’s life cycle: when two parasite proteins, AMA1 and RON2L, combine to form a complex that anchors the parasite to a red blood cell and eases its passage into the cell interior. Quite sensibly, researchers developed candidate vaccines that elicit antibodies capable of blocking the crucial attachment. However, because AMA1’s make-up varies widely among different parasite strains, any vaccine based on a single strain’s AMA1 cannot protect against other parasite strains and thus has limited usefulness in malaria-endemic countries. Experimental malaria vaccines have also been made by mixing AMA1 and RON2L proteins. While these do elicit more strain-transcending antibodies than AMA1-only vaccines, they are difficult to manufacture and simple mixtures of AMA1 and RON2L in vaccines do not form the kind of stable protein complex seen in nature.

Now, researchers in NIAID’s Laboratory of Malaria Immunology and Vaccinology have used structural information about the two parasite proteins along with mechanistic information about the interaction between AMA1 and RON2L to design and build an entirely novel immunogen (the component of a vaccine that elicits an immune response). When tested in rats, their “structure-based design 1” (SBD1) immunogen vaccine performed better than any AMA1 or AMA1-RON2L vaccine. It also upends the conventional wisdom that successful vaccines must elicit receptor-blocking antibodies, notes Niraj H. Tolia, Ph.D., who led the research team.

The SBD1 immunogen does not exist in nature, explains Dr. Tolia. Rather, it consists of AMA-1 that the team altered by rearranging its amino acid sequence in a way that they predicted would work well as a vaccine. Once altered, the scientists linked RON2L to a position in their immunogen to recreate the two protein AMA1-RON2L complex. The team analyzed the structure of the designed immunogen using X-ray crystallography and determined that it closely mimicked that of naturally occurring AMA1-RON2L complex. However, SBD1 has a number of advantages over a simple mixture of two component proteins, Dr. Tolia explains. For instance, it is highly stable once injected, is easy to manufacture in large quantities and consistently takes the desired, immune-stimulating shape.

In rats, SBD1 vaccine elicited significantly more potent strain-transcending antibodies than either AMA1 alone or an AMA1-RON2L complex vaccine. The ability to provide protection from multiple parasite strains is highly desirable for any malaria vaccine. Most surprisingly, Dr. Tolia says, the SBD1 vaccine provided this strain-transcending protection even though it generated no antibodies whatsoever that were aimed at blocking AMA1 from binding to RON2L and initiating attachment to the red blood cell. Instead, it appears SBD1 elicits high quality antibodies that inhibit parasite growth by targeting parts of the parasite’s proteins that lie outside of RON2L binding site and operate independently of receptor blockade, explains Dr. Tolia.

Together, the team’s observations about SBD1 make it an appealing candidate for further studies in animals and perhaps ultimately in human trials, he adds. Furthermore, other parasites, including those that cause the human diseases toxoplasmosis and babesiosis and one that causes disease in cattle and dogs, use their own forms of AMA1 protein to invade host cells. Thus, insights gained in this recent work may be applicable to the design of vaccines against those parasites as well.

Reference: PN Patel et al. Structure-based design of a strain transcending AMA1-RON2L malaria vaccine. Nature Communications. DOI: 10.1038/s41467-023-40878-7 (2023).

Contact Information

Contact the NIAID Media Team.

301-402-1663
niaidnews@niaid.nih.gov

Search NIAID Blog

NIAID-Funded Study Traces Evolution of Malaria Drug Resistance in E. Africa

NIAID Now |

NIAID-Funded Study Traces Evolution of Malaria Drug Resistance in E. Africa – Emergence of Artemisinin Partial Resistance Mutations Found Across Uganda

Emerging resistance to common malaria treatments in Uganda could be connected to inconsistent use of measures to control mosquito populations, according to new findings published in the New England Journal of Medicine. The trend is worrisome, the NIAID-funded scientists state, because resistance mutations they tracked are taking root and spreading. Researchers at the University of California at San Francisco (UCSF), funded in part by NIAID’s International Centers of Excellence for Malaria Research program, led the international collaboration.

Malaria is one of the most common and serious infectious diseases. The World Health Organization (WHO) estimates that about half of the world’s population is at risk of getting malaria, which is caused primarily by Plasmodium falciparum parasites spread through the bites of female Anopheles mosquitos. In 2021, WHO estimated that about 247 million people contracted malaria in 85 countries; about 619,000 people died. About 95% of cases and deaths were in Africa.

For decades a combination of measures has resulted in effective malaria control in Africa: preventing malaria transmission with bed nets treated with insecticides; spraying insecticides indoors; treating malaria with artemisinin-based combination medicines; and preventing malaria with other drugs.

Artemisinins – originally extracted from the sweet wormwood plant, but also now available synthetically – rapidly eliminate malaria parasites from the bloodstream. They are used in combination with other longer-lasting drugs to effectively treat malaria. Beginning in 2008, however, studies in Southeast Asia identified poor results from artemisinins and eventually from artemisinin-based combination malaria treatments. Scientists soon found the primary reason – a protein (PfK13) in P. falciparum had developed mutations that made it partially resistant to artemisinins.

Since then, scientists in Africa have watched for the same mutations to emerge. The NEJM study identified five of these mutations, each of which may lead to partial resistance, that have emerged in different parts of Uganda. Their work used data from malaria cases and annual patient surveillance throughout Uganda between 2014 and 2022.

They found that two of the five key mutations appeared in far northern Uganda in 2016-17. The mutations then spread across much of northern Uganda and nearby regions, appearing in up to 54% of cases in one district. The other three key mutations emerged in western Uganda in about 2021-22, with prevalence up to 20% to 40% in different districts.

The study notes that in parts of Uganda where indoor spraying stopped between 2014 and 2018, cases of malaria quickly surged. Likewise, the emergence of any of the five key resistance mutations also surged, suggesting that the emergence was aided by malaria epidemics in populations where malaria had previously been well-controlled.

The researchers have different theories about how and why the mutations emerged. Their leading hypothesis, which they have targeted for more study, is that in populations with a low level of immunity to malaria, an epidemic increases the likelihood that resistance will emerge. “In northern Uganda,” the study states, “this scenario occurred after the withdrawal of effective malaria control, leading to high incidence of malaria in a population with relatively low antimalarial immunity.” They also suggest that fluctuating malaria transmission contributed to the emergence of drug resistance in southwestern Uganda. They emphasize the importance of maintaining malaria control interventions, with attention to malaria outbreaks, to decrease the likelihood of emergence or spread of drug resistance.

Others working on the project with UCSF include scientists from the Infectious Diseases Research Collaboration and Makerere University in Uganda; the University of Tubingen in Germany; Brown University in Rhode Island; and Dominican University of California.

Reference: 

M Conrad et al. Evolution of Partial Resistance to Artemisinins in Malaria Parasites in Uganda. New England Journal of Medicine DOI: 10.1056/NEJMoa2211803 (2023).

Contact Information

Contact the NIAID Media Team.

301-402-1663
niaidnews@niaid.nih.gov

Search NIAID Blog

NIAID’s VRC, S. Africa’s Afrigen Kick Off Vaccine-Sharing Efforts

NIAID Now |

NIAID’s VRC, S. Africa’s Afrigen Kick Off Vaccine-Sharing Efforts
Training Aimed at Making mRNA Technology Available Globally 

A team of vaccine production experts from South Africa recently finished training in Maryland as part of a global mRNA vaccine collaboration. The experts are working with scientists at NIAID’s Vaccine Research Center (VRC) to produce vaccines against a list of troubling infectious diseases.

The mRNA vaccine platform, which became commonly used during the COVID-19 pandemic, works by delivering a piece of genetic material to cells that instructs the body to make a protein fragment resembling one from a target pathogen (such as a virus). The immune system then recognizes and remembers the fragment, enabling it to mount a strong response if the body is exposed to that pathogen. The mRNA vaccine production process involves inserting the selected virus protein gene into a plasmid (a circular piece of DNA), the production of which was the topic of the visit from the South African scientists.

The seven-member team from Afrigen Biologics and Vaccines, a biotechnology company based in Cape Town, South Africa, arrived on July 21 for two weeks of collaboration and learning with VRC scientists. They focused on vaccine manufacturing at the VRC’s Vaccine Clinical Materials Program in Frederick, Maryland. Specific aspects included topics such as: inoculum growth, nutrient feeding, quality control, and other steps needed to make an mRNA vaccine. The Afrigen team also met with VRC leadership, including the recently appointed VRC Director, Dr. Ted Pierson. 

The visit represented a significant milestone for an ongoing research collaboration established in March 2022 between NIAID and Afrigen. Their objective is to share knowledge, expertise, and data to expedite mRNA vaccine production globally. As part of the collaboration, NIAID – specifically scientists at the VRC – are making plasmid DNA that will be used for Afrigen’s in vitro transcription process. Additionally, the VRC is providing technology transfer and training on plasmid DNA manufacturing, which the Afrigen group observed during the visit. In turn, Afrigen is sharing knowledge and expertise with NIAID scientists about the in vitro transcription and lipid nanoparticle formulation processes. The mutually beneficial scientific collaboration will advance each institution’s work toward establishing mRNA vaccine production capabilities to support their respective missions.

The World Health Organization, the COVAX Vaccine Manufacturing Taskforce, and the Medicines Patent Pool established a formal agreement in July 2021 to build capacity in low- and middle-income countries to make mRNA vaccines, now known as the mRNA technology transfer programme. Afrigen was chosen as a center of excellence and training, or “technology transfer hub,” as part of the mRNA technology transfer programme. The hub is designed to improve the health and security of member nations by creating sustainable, locally owned mRNA vaccine manufacturing in those nations. Because mRNA vaccines can be cheaper to produce, quickly developed in response to outbreaks, and easily modified when new variants of pathogens emerge, the ability to produce these vaccines in low- and middle-income nations will contribute significantly to global health security.

Afrigen is working to establish mRNA vaccine production technology—initially for a COVID-19 vaccine candidate—and will work with local partners to conduct research to evaluate the vaccines, along with manufacturing the vaccines at scale. The eventual goal is to be able to share this established process with manufacturers across multiple countries. 

Though the effort began with COVID-19 in mind, the scientists are mutually hoping to use the mRNA vaccine platform to develop and test vaccines against an array of infectious diseases found globally, such as HIV, tuberculosis, malaria, influenza, cancer-associated viruses and more.

Afrigen scientists socializing with colleagues at the Vaccine Research Center’s Vaccine Production Program (VPP) and Vaccine Clinical Materials Program (VCMP) in Frederick, Maryland.

Afrigen scientists spent time getting to know colleagues at the Vaccine Research Center’s Vaccine Production Program (VPP) and Vaccine Clinical Materials Program (VCMP), including during a meet-and-greet with VRC leadership and staff at the VCMP pilot plant in Frederick, Maryland.

Credit: NIAID


 

Contact Information

Contact the NIAID Media Team.

301-402-1663
niaidnews@niaid.nih.gov

Search NIAID Blog