NIH Awards Will Fund Post-Treatment Lyme Disease Syndrome Research

Five projects awarded for research to better understand Post-treatment Lyme Disease Syndrome (PTLDS), which is a collection of symptoms, such as pain, fatigue, and difficulty thinking or “brain fog,” that linger following standard treatment for Lyme disease.

Contact

Submit a Media Request

Contact the NIAID News & Science Writing Branch.

301-402-1663
niaidnews@niaid.nih.gov
All Media Contacts

National and Regional Biocontainment Research Facilities

The National Biocontainment Laboratories (NBLs) and Regional Biocontainment Laboratories (RBLs) provide BSL4/3/2 and BSL3/2 biocontainment facilities, respectively, for research on biodefense and emerging infectious disease agents.  

Diagnostics Development Services

NIAID’s Diagnostics Development Services program offers reagents, platform testing, and planning and design support to accelerate product development of in vitro diagnostics (IVD) for infectious diseases, from research feasibility through clinical validation.

Researchers Create Engineered Human Tissue to Study Mosquito Bites, Disease

Media Type
Article
Publish or Event Date
Research Institution
University of Central Florida
Short Title
Researchers Create Engineered Human Tissue to Study Mosquito Bites, Disease
Content Coordinator
Content Manager

Promising Advances for Antibody Treatment of Viruses that Cause Neurologic and Arthritic Diseases

NIAID Now |

NIAID scientists and colleagues are one step closer to developing a safe and effective therapy against alphaviruses with the identification of SKT05, a monoclonal antibody (mAb) derived from macaques vaccinated with virus-like particles (VLPs) representing three encephalitic alphaviruses.

Spread by mosquitos, alphaviruses primarily affect people in one of two ways: causing severe neurological impairment such as encephalitis (brain swelling) or crippling muscle pain similar to arthritis. Western, eastern and Venezuelan equine encephalitis viruses (EEV) are examples of the former, while chikungunya and Ross River viruses are examples of the latter.

Building on studies from the past decade, scientists in NIAID’s Vaccine Research Center and colleagues knew that macaques produce dozens of different protective antibodies when experimentally vaccinated against the EEVs. In a new study published in Cell, the research team identified 109 mAbs in macaques immunized with the experimental western, eastern, and Venezuelan EEV VLP vaccine. All antibodies were individually tested for binding and neutralization against the three EEVs, with the best ones also assessed against arthritogenic alphaviruses not included in the vaccine. Collaborators included scientists from NIAID’s Laboratory of Viral Diseases, USAMRIID’s Virology Division, and Columbia University.

Their work identified SKT05 as the most broadly reactive antibody – remarkably, it also provided protection against both types of alphaviruses, those that cause encephalitis and those that cause arthritic-like disease. High-resolution structural studies further revealed that the way SKT05 binds to alphaviruses could make it resistant to surface changes that can occur in viruses – which means the mAb is likely to have lasting effectiveness.

Further studies are planned to investigate potential clinical development of SKT05. They aim to better define how SKT05 interacts with viruses and whether it can confer protective benefits against additional alphaviruses.

References:
M Sutton et al. Vaccine elicitation and structural basis for antibody protection against alphaviruses. Cell DOI: https://doi.org/10.1016/j.cell.2023.05.019 (2023).

EE Coates, et al. Safety and immunogenicity of a trivalent virus-like particle vaccine against western, eastern, and Venezuelan equine encephalitis viruses: a phase 1, open-label, dose-escalation, randomised clinical trial. Lancet Infectious Diseases (2022).

SY Ko, et al. A virus-like particle vaccine prevents equine encephalitis virus infection in nonhuman primates. Science Translational Medicine (2019).

Contact Information

Contact the NIAID Media Team.

301-402-1663
niaidnews@niaid.nih.gov

Search NIAID Blog

Newly Discovered Immune System Mechanism Suppresses Parasitic Infection

Screening of Healthy Volunteers for Investigational Antimalarial Drugs, Malaria Vaccines, and Controlled Human Malaria Challenge

This is a protocol to screen healthy volunteers for future and ongoing LMIV malaria drug, vaccine, or controlled human malaria infection (CHMI) trials. A complete medical history and blood and urine samples will be obtained for evaluation.

Contact Information

Contact the LMIV Clinical Team  

Email: LMIVClinicalTrial@mail.nih.gov 

Phone: 240-627-3355 

Mosquito Saliva Can Weaken Our Defenses Against Deadly Dengue

Hidden "Super Spreaders" Spur Dengue Fever Transmission

Engineering a Malaria Vaccine