Daniel Douek, M.D., Ph.D.

Section or Unit Name
PREMISE
Exclude from directory
On
This Researcher/Clinician’s Person Page
Parent Lab/Program
Program Description

At the NIAID Vaccine Research Center, the PREMISE (Pandemic REsponse REpository through Microbial and Immune Surveillance and Epidemiology) program was established to support pandemic preparedness and response. Through a network of investigators and collaborators, PREMISE conducts virologic and immunologic screening of targeted and broad cohorts to detect reactivity against pathogens of pandemic potential. PREMISE also sequences samples from animal reservoirs and symptomatic humans to identify new and re-emerging pathogens. The resulting analyses are shared to pre-emptively generate reagent and data resources for early detection and diagnosis, and to identify monoclonal antibodies and immunogens for vaccine and therapeutic discovery and development. Ultimately, PREMISE aims to serve as a translational vehicle to integrate serologic and cellular immune discovery, targeting a broad array of pathogens, into product development for pathogens with pandemic potential.

graphic showing the PREMISE initiative and its partnerships: academia, industry, NIH programs, international agencies, USG and NGOs.

The PREMISE initiative and its partnerships

Credit: NIAID
Selected Publications

Nguyen-Tran H, Park SW, Dominguez SR, Vogt MR, Permar S, Permaul P, Hernandez M, Douek DC, McDermott AB, Metcalf CJE, Grenfell B, Spaulding AB. Enterovirus D68: A Test Case for the Use of Immunologic Surveillance to Develop Tools to Mitigate the Pandemic Potential of Emerging Pathogens. The Lancet Microbe. 2022 Jan 7.

Mina MJ, Metcalf CJE, McDermott AB, Douek DC, Farrar J, Grenfell BT. A Global lmmunological Observatory to meet a time of pandemics. Elife. 2020 Jun 8;9:e58989.

Additional Information

More Information about PREMISE

Research Group

  • Senior Advisor and Team Lead: Alicen Burns Spaulding, Ph.D., M.P.H.
  • Bioinformatics: Su Godbole, M.S.
  • Protein Design and Production: Ananda Chowdhury, Ph.D.
  • Cellular and Serological Assays: Jennifer Wang, B.A.; Megan Weitner, M.S.
  • Contact: PREMISE@mail.nih.gov
Photo of PREMISE Research Group

The PREMISE research group, along with support staff and guests. Front row (left to right): Alex Mullen, Alicen Spaulding, Danny Douek, Gerald Lily, Lucio Gama. Back row (left to right): Sucheta Godbole, Jenny Wang, Karin Bok, Ananda Chowdhury, Leo Serebryannyy, Rahul Subramanian, Megan Weitner

Credit: Alex Mullen
Major Areas of Research
  • Pandemic preparedness

Chung Park, M.S., Ph.D.

Section or Unit Name
B-Cell Molecular Immunology Section
Exclude from directory
Off
Section/Unit: Location
This Researcher/Clinician’s Person Page
Parent Lab/Program
Program Description

Philosophy - Advancing Human Health Through Immunological Research:

  • Enhance understanding of immune system regulation in health and disease
  • Provide mechanistic insights into disease pathology to inform therapeutic strategies
  • Support translational research to develop targeted treatments for immune-related disorders

Secondary Lymphoid Organ Remodeling and Pathogen-Immune cell Interactions:

  • Investigate structural remodeling of lymph nodes in immune responses
  • Examine chemokine receptor sensitivity modulation by RGS proteins
  • Characterize cellular networks facilitating virus envelope protein transfer

Extracellular Signaling, GPCR Signal Transduction and Immune Modulation:

  • Investigate chemokine receptor-mediated signaling in immune cell regulation
  • Examine heterotrimeric G-protein activation in lymphocyte function
  • Study molecular mechanisms of G-protein-coupled receptor (GPCR) signaling
  • Analyze how GPCR signaling orchestrates immune responses and cell dynamics

Experimental Approaches:

  • Utilize genetically engineered murine models
  • Employ intravital two-photon laser scanning microscopy (TP-LSM) and high-throughput flow cytometry
Selected Publications

Park C, Hwang IY, Yan SL, Vimonpatranon S, Wei D, Van Ryk D, Girard A, Cicala C, Arthos J, Kehrl JH. Murine alveolar macrophages rapidly accumulate intranasally administered SARS-CoV-2 Spike protein leading to neutrophil recruitment and damage. Elife. 2024 Mar 20;12:RP86764.

Park C, Kehrl JH. An integrin/MFG-E8 shuttle loads HIV-1 viral-like particles onto follicular dendritic cells in mouse lymph node. Elife. 2019 Dec 6;8:e47776.

Guzzo C, Ichikawa D, Park C, Phillips D, Liu Q, Zhang P, Kwon A, Miao H, Lu J, Rehm C, Arthos J, Cicala C, Cohen MS, Fauci AS, Kehrl JH, Lusso P. Virion incorporation of integrin α4β7 facilitates HIV-1 infection and intestinal homing. Sci Immunol. 2017 May 12;2(11):eaam7341.

Park C, Arthos J, Cicala C, Kehrl JH. The HIV-1 envelope protein gp120 is captured and displayed for B cell recognition by SIGN-R1(+) lymph node macrophages. Elife. 2015 Aug 10;4:e06467.

Park C, Hwang IY, Sinha RK, Kamenyeva O, Davis MD, Kehrl JH. Lymph node B lymphocyte trafficking is constrained by anatomy and highly dependent upon chemoattractant desensitization. Blood. 2012 Jan 26;119(4):978-89.

Sinha RK*, Park C*, Hwang IY, Davis MD and Kehrl JH. B lymphocytes Exit Lymph Nodes through Cortical Lymphatic Sinosoids Near to Lymph Nodes Follicles by a Mechanism Independent of S1P-Mediated Chemotaxis. Immunity. 2009 Feb 18. [Epub ahead of print] (*Co-first publication)

Visit PubMed for a complete publication listing.

Major Areas of Research
  • Lymphocyte trafficking and cellular migration dynamics from homeostasis to pathological conditions
  • B-cell signaling, G-protein signaling pathways, and the regulatory role of RGS proteins  
  • Mechanisms underlying complex cellular immune responses induced by diverse antigens and pathogens 

Dissecting Human Immune Responses to Infection with Influenza or SARS-CoV-2

The purpose of this study is to evaluate the virus-specific immune response in people who are symptomatic with confirmed influenza or COVID-19.

Contact Information

Office/Contact: Jamie Mills
Phone: 314-305-1054
Email: jamiem@wustl.edu
 

Rahul K. Suryawanshi, Ph.D.

Section or Unit Name
Neurovirology Unit
Exclude from directory
Off
Section/Unit: Year Established
Section/Unit: Location
This Researcher/Clinician’s Person Page
Program Description

The Neurovirology Unit conducts research on the acute and long-term complications associated with human alphaherpesvirus infections and pulmonary infections caused by coronaviruses and influenza.

Using transgenic animal models and integrating approaches from molecular virology, neurobiology, and immunology, we investigate the mechanisms underlying viral pathogenesis in the central nervous system, which particularly involves analyzing roles of immunomodulatory host factors to understand their roles in pathogenesis, neuroprotection, and potentiating antiviral immunity. While studying different aspects of antiviral immunity, we also focus on understanding the neurological regulation of antiviral immunity, neuroinflammation, and the long-term manifestations of viral infection, such as neurodegeneration and cognitive decline using machine learning-based behavioral approaches.

Additionally, the Neurovirology Unit explores the interactions between viral proteins, host factors, and immune responses that drive differential disease severity observed in humans, paving the way for innovative therapeutic strategies. We are also committed to advancing human brain and lung organoid models to recapitulate disease phenotypes in humans and thereby enhance our understanding of viral disease mechanisms.

Selected Publications

Suryawanshi RK, Chen IP, Ma T, Syed AM, Brazer N, Saldhi P, Simoneau CR, Ciling A, Khalid MM, Sreekumar B, Chen PY, Kumar GR, Montano M, Gascon R, Tsou CL, Garcia-Knight MA, Sotomayor-Gonzalez A, Servellita V, Gliwa A, Nguyen J, Silva I, Milbes B, Kojima N, Hess V, Shacreaw M, Lopez L, Brobeck M, Turner F, Soveg FW, George AF, Fang X, Maishan M, Matthay M, Morris MK, Wadford D, Hanson C, Greene WC, Andino R, Spraggon L, Roan NR, Chiu CY, Doudna JA, Ott M. Limited cross-variant immunity from SARS-CoV-2 Omicron without vaccination. Nature. 2022 Jul;607(7918):351-355.

Ryu JK, Yan Z, Montano M, Sozmen EG, Dixit K, Suryawanshi RK, Matsui Y, Helmy E, Kaushal P, Makanani SK, Deerinck TJ, Meyer-Franke A, Rios Coronado PE, Trevino TN, Shin MG, Tognatta R, Liu Y, Schuck R, Le L, Miyajima H, Mendiola AS, Arun N, Guo B, Taha TY, Agrawal A, MacDonald E, Aries O, Yan A, Weaver O, Petersen MA, Meza Acevedo R, Alzamora MDPS, Thomas R, Traglia M, Kouznetsova VL, Tsigelny IF, Pico AR, Red-Horse K, Ellisman MH, Krogan NJ, Bouhaddou M, Ott M, Greene WC, Akassoglou K. Fibrin drives thromboinflammation and neuropathology in COVID-19. Nature. 2024 Sep;633(8031):905-913.

Suryawanshi RK, Patil CD, Agelidis A, Koganti R, Ames JM, Koujah L, Yadavalli T, Madavaraju K, Shantz LM, Shukla D. mTORC2 confers neuroprotection and potentiates immunity during virus infection. Nat Commun. 2021 Oct 14;12(1):6020.

Suryawanshi RK, Patil CD, Agelidis A, Koganti R, Yadavalli T, Ames JM, Borase H, Shukla D. Pathophysiology of reinfection by exogenous HSV-1 is driven by heparanase dysfunction. Sci Adv. 2023 Apr 28;9(17):eadf3977.

Suryawanshi RK, Jaishankar P, Correy GJ, Rachman MM, O'Leary PC, Taha TY, Zapatero-Belinchón FJ, McCavittMalvido M, Doruk YU, Stevens MGV, Diolaiti ME, Jogalekar MP, Richards AL, Montano M, Rosecrans J, Matthay M, Togo T, Gonciarz RL, Gopalkrishnan S, Neitz RJ, Krogan NJ, Swaney DL, Shoichet BK, Ott M, Renslo AR, Ashworth A, Fraser JS. The Mac1 ADP-ribosylhydrolase is a Therapeutic Target for SARS-CoV-2. eLife14:RP103484.

Suryawanshi R, Ott M. SARS-CoV-2 hybrid immunity: silver bullet or silver lining?. Nat Rev Immunol. 2022 Oct;22(10):591-592.

Major Areas of Research
  • Acute and post-acute neuropathies of virus infections
  • Impact of genetics on disease severity
  • Host-virus interactions and its effect on antiviral immunity
  • Human brain and lung organoid models to study virus infection

Fabiano Oliveira, M.D., Ph.D.

Section or Unit Name
Vector Molecular Biology Section

Highlight

Exclude from directory
Off
Section/Unit: Location
This Researcher/Clinician’s Person Page
Program Description

Our research focuses on the complex interactions between the human immune system and insect-derived molecules, and how these interactions can influence the outcomes of vector-borne diseases such as dengue, Zika, Chikungunya, and leishmaniasis. When an insect bites, it injects hundreds of arthropod molecules into the host's skin, alerting our immune system to these foreign agents. If the insect is infected with a pathogen, the microorganism is delivered along with these insect-derived molecules. Our immune response to these molecules over time can either help or hinder pathogen establishment, ultimately affecting the disease outcome.

Our work is conducted at two primary locations: the Laboratory of Malaria and Vector Research (LMVR) in Rockville, which is equipped with cutting-edge technologies, and the NIAID International Center of Excellence in Research (ICER) in Cambodia, where we conduct field observations and studies.

At LMVR-Rockville, we use advanced technologies and methodologies to explore the molecular and immunological mechanisms underlying the human response to arthropod bites and the pathogens they transmit. In Cambodia, at the NIAID ICER, we engage in extensive fieldwork to gather critical data and observations directly from affected populations. By integrating field data with laboratory findings, we aim to develop robust hypotheses that can lead to effective strategies for disease mitigation and control.

Our multidisciplinary approach allows us to bridge the gap between laboratory research and field applications. By understanding how the human immune system responds to arthropod molecules, we can identify potential targets for vaccines, therapeutics, and diagnostic tools. Additionally, our research contributes to the development of innovative vector control strategies that can reduce the incidence of these debilitating diseases.

Through collaboration with local communities, healthcare providers, and international partners, we strive to translate our scientific discoveries into practical solutions that can improve public health outcomes. Our ultimate goal is to reduce the burden of vector-borne diseases and enhance the quality of life for people living in endemic regions.

Our research aims to improve dengue prevention and treatment strategies for U.S. travelers, personnel in endemic areas, and regions with reported dengue cases, such as Hawaii, Florida, Texas, Puerto Rico, the U.S. Virgin Islands, and Guam. Enhanced predictive, management, diagnostic, and preventive measures for dengue outbreaks are particularly crucial for these at-risk regions. The development and use of prophylactic therapeutics targeting specific immune responses to mosquito bites could reduce the transmission of arboviruses, including eastern equine encephalitis, Jamestown Canyon, La Crosse, Powassan, St. Louis encephalitis, and West Nile viruses. Improved diagnostic capabilities for vector-borne diseases and emerging infections will lead to better patient outcomes. 

Selected Publications

Manning JE, Chea S, Parker DM, Bohl JA, Lay S, Mateja A, Man S, Nhek S, Ponce A, Sreng S, Kong D, Kimsan S, Meneses C, Fay MP, Suon S, Huy R, Lon C, Leang R, Oliveira F. Development of Inapparent Dengue Associated With Increased Antibody Levels to Aedes aegypti Salivary Proteins: A Longitudinal Dengue Cohort in Cambodia. J Infect Dis. 2022 Oct 17;226(8):1327-1337.

Guerrero D, Vo HTM, Lon C, Bohl JA, Nhik S, Chea S, Man S, Sreng S, Pacheco AR, Ly S, Sath R, Lay S, Missé D, Huy R, Leang R, Kry H, Valenzuela JG, Oliveira F, Cantaert T, Manning JE. Evaluation of cutaneous immune response in a controlled human in vivo model of mosquito bites. Nat Commun. 2022 Nov 17;13(1):7036.

Chea S, Willen L, Nhek S, Ly P, Tang K, Oristian J, Salas-Carrillo R, Ponce A, Leon PCV, Kong D, Ly S, Sath R, Lon C, Leang R, Huy R, Yek C, Valenzuela JG, Calvo E, Manning JE, Oliveira F. Antibodies to Aedes aegypti D7L salivary proteins as a new serological tool to estimate human exposure to Aedes mosquitoes. Front Immunol. 2024 May 1;15:1368066.

Guimaraes-Costa AB, Shannon JP, Waclawiak I, Oliveira J, Meneses C, de Castro W, Wen X, Brzostowski J, Serafim TD, Andersen JF, Hickman HD, Kamhawi S, Valenzuela JG, Oliveira F. A sand fly salivary protein acts as a neutrophil chemoattractant. Nat Commun. 2021 May 28;12(1):3213.

Oliveira F, Rowton E, Aslan H, Gomes R, Castrovinci PA, Alvarenga PH, Abdeladhim M, Teixeira C, Meneses C, Kleeman LT, Guimarães-Costa AB, Rowland TE, Gilmore D, Doumbia S, Reed SG, Lawyer PG, Andersen JF, Kamhawi S, Valenzuela JG. A sand fly salivary protein vaccine shows efficacy against vector-transmitted cutaneous leishmaniasis in nonhuman primates. Sci Transl Med. 2015 Jun 3;7(290):290ra90.

Manning JE, Oliveira F, Coutinho-Abreu IV, Herbert S, Meneses C, Kamhawi S, Baus HA, Han A, Czajkowski L, Rosas LA, Cervantes-Medina A, Athota R, Reed S, Mateja A, Hunsberger S, James E, Pleguezuelos O, Stoloff G, Valenzuela JG, Memoli MJ. Safety and immunogenicity of a mosquito saliva peptide-based vaccine: a randomised, placebo-controlled, double-blind, phase 1 trial. Lancet. 2020 Jun 27;395(10242):1998-2007.

Visit PubMed for a complete publication listing.

Major Areas of Research
  • Characterization of human immune response to ticks, mosquito, and sand fly saliva in the context of medically significant vector-borne diseases (Lyme disease, Powassan, dengue, malaria, and leishmaniasis)
  • Clinical and field epidemiology of the impact of mosquito saliva immunity on the outcome of dengue, Zika, and other diseases carried by mosquitos
  • Strategies to block vector-borne diseases by targeting the arthropod vector and interruption transmission to the human host

A Study to Evaluate the Pharmacokinetics, Safety and Tolerability of ALG-097558 in Subjects with Renal Impairment and in Healthy Subjects with Normal Renal Function

The primary purpose of this study is to characterize the effect of renal impairment on the plasma pharmacokinetics of ALG-097558 following administration of multiple, twice daily (Q12H) oral (PO) doses.

Contact Information

Office/Contact: Alisa Danielyan
Email: alice_danielyan@yahoo.com
 

A Study to Evaluate the Pharmacokinetics, Safety and Tolerability of ALG-097558 in Subjects with Hepatic Impairment and in Healthy Subjects with Normal Hepatic Function

The primary purpose of this study is to characterize the effect of hepatic impairment on the plasma pharmacokinetics of ALG-097558 following administration of multiple, twice daily (Q12H) oral (PO) doses.

Contact Information

Office/Contact: Alisa Danielyan
Email: alice_danielyan@yahoo.com
 

Strategies and Treatments for Respiratory Infections & Viral Emergencies (STRIVE): Shionogi Protease Inhibitor (Ensitrelvir)

The objective of this study is to evaluate S-217622 (ensitrelvir), an anti-SARS-CoV2 3C-like protease inhibitor (PI) developed by Shionogi &; Co. Ltd.

Contact Information

Office/Contact: Nashville ICC
Email: strivenash@insight-trials.org
 

December ACD Meeting—Defining Strategies for Major Initiatives Across NIH

Funding News Editions:
See more articles in this edition

NIH’s Advisory Committee to the Director (ACD) held its most recent meeting on December 12 and 13, 2024. As detailed in its CharterACD Members provide recommendations on program development, resource allocation, NIH administrative regulation, and other aspects of NIH policy.

For daily agendas and the full list of meeting materials, check the December 12-13, 2024 section of the 2022-2024 ACD Meetings page. Find video recordings of the ACD presentations at:

NIAID’s extramural research community may be especially interested in the following topics: 

The meeting also covered the following topics:

The next ACD meeting will be held June 12 and 13, 2025. Monitor the ACD Meetings page for updates (i.e., agenda and videocast links).

Contact Us

Email us at deaweb@niaid.nih.gov for help navigating NIAID’s grant and contract policies and procedures.

A Cause of Hyperinflammatory Response in Lethal COVID-19 Identified