Catharine (Katy) Bosio, Ph.D.

Chief, Immunity to Pulmonary Pathogens Section

Major Areas of Research

  • Innate immunity to Francisella tularensis
  • Vaccine development for pneumonic tularemia
  • Modulation of human cells by F. tularensis

Program Description

The Immunity to Pulmonary Pathogens Section is located at Rocky Mountain Laboratories in Hamilton, Montana. The focus of our research is to gain a better understanding of how aerosolized pathogens successfully infect and modulate the pulmonary environment to cause overt disease and death. Currently, our principal interest is the pathogenesis of aerosolized F. tularensis, the causative agent of pneumonic tularemia.

There are two primary areas of research ongoing in our laboratory: innate immunity to F. tularensis, and modulation of human cells by F. tularensis. We are particularly interested in modulation of primary antigen-presenting cells (dendritic cells and macrophages) by F. tularensis and how this modulation allows the bacterium to initially evade host immune responses immediately following infection. We utilize both in vivo and in vitro models of disease to reveal specific mechanisms at play in both host and pathogen to gain a better understanding of the dynamic nature of this disease.

Biography

Dr. Bosio graduated from Washington State University cum laude with a B.Sc. in 1993. Following completion of her Ph.D. at Colorado State University in 1998, Dr. Bosio completed postdoctoral fellowships at the Food and Drug Administration Center for Biologics Evaluation and Research and at the U.S. Army Medical Research Institute for Infectious Diseases, studying innate immunity to Mycobacterium tuberculosisF. tularensis, Marburg virus, and Ebola virus. Prior to joining NIAID in 2007, Dr. Bosio was an assistant professor at Colorado State University in the department of microbiology, immunology, and pathology. Dr. Bosio’s laboratory studies the host response to pulmonary pathogens, with special emphasis on virulent F. tularensis and dendritic cells, macrophages, and monocytes.

Research Group

Bosio Group 2018

Lab members L to R: ​Tara Wherly, Benji Schwarz, Catharine (Katy) Bosio, Bobby Buntyn (former post-bacc), Tyler Evans (former summer student), Lydia Roberts, Forrest Jessop, Robin Ireland

Credit: NIAID

Selected Publications

Roberts LM, Wehrly TD, Ireland RM, Crane DD, Scott DP and Bosio CM. Temporal requirement for pulmonary resident and circulating T cells during virulent Francisella tularensis infection. Journal of Immunology. 2018. 201:1186-1193.

Ireland R, Schwarz BJ, Nardone G, Wherly T, Broeckling CD, Chiramel AI, Best SM,   Bosio CM. Unique phosphatidylethanolamine acts as a potent anti-inflammatory lipid. Journal of Innate Immunity. 2018. 10:291-305.

Jessop FJ, Schwarz BJ, Heitman EM, Buntyn RW, Bosio CM. Temporal manipulation of mitochondrial function by virulent Francisella tularensis to limit inflammation and control cell death. Infection and Immunity. 2018. 86: e00044-18.

Roberts LM, Crane DD, Wehrly TD, Fletcher JR, Jones, BD, Bosio CM. Inclusion of Epitopes that Expand High-Avidity CD4+ T Cells Transforms Subprotective Vaccines to Efficacious Immunogens against Virulent Francisella tularensis. 2016. J Immunol. 197: 2738-47.

Wyatt EV, Diaz K, Griffin AJ, Rassmussen JA, Crane DD, Jones BD and Bosio CM.  Metabolic Reprogramming of Host Cells by Virulent Francisella tularensis for Optimal Replication and Modulation of Inflammation.  2016. J Immunol. 196:4227-36.

View a complete listing in PubMed.

Content last reviewed on November 15, 2018